SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Frontiers in zoology

1160

Several mammalian species spontaneously align their body axis with respect to the Earth’s magnetic field (MF) lines in diverse behavioral contexts. Magnetic alignment is a suitable paradigm to scan for the occurrence of magnetosensitivity across animal taxa with the heuristic potential to contribute to the understanding of the mechanism of magnetoreception and identify further functions of magnetosensation apart from navigation. With this in mind we searched for signs of magnetic alignment in dogs. We measured the direction of the body axis in 70 dogs of 37 breeds during defecation (1,893 observations) and urination (5,582 observations) over a two-year period. After complete sampling, we sorted the data according to the geomagnetic conditions prevailing during the respective sampling periods. Relative declination and intensity changes of the MF during the respective dog walks were calculated from daily magnetograms. Directional preferences of dogs under different MF conditions were analyzed and tested by means of circular statistics.

Concepts: Magnetic field, Earth's magnetic field, Magnet, Earth, Dynamo theory, Magnetism, Solar wind, Magnetosphere

270

Multi-level fission-fusion societies, characteristic of a number of large brained mammal species including some primates, cetaceans and elephants, are among the most complex and cognitively demanding animal social systems. Many free-ranging populations of these highly social mammals already face severe human disturbance, which is set to accelerate with projected anthropogenic environmental change. Despite this, our understanding of how such disruption affects core aspects of social functioning is still very limited.

Concepts: Human, Species, Sociology, Mammal, Primate, Complex number, Hippopotamus, Incisor

184

BACKGROUND: Females have often been shown to exhibit preferences for certain male traits. However, little is known about behavioural rules females use when searching for mates in their natural habitat. We investigated mate sampling tactics and related costs in the territorial strawberry poison frog (Oophaga pumilio) possessing a lek-like mating system, where both sequential and simultaneous sampling might occur. We continuously monitored the sampling pattern and behaviour of females during the complete period between two successive matings. RESULTS: We found no evidence that females compared males by visiting them. Instead females mated with the closest calling male irrespective of his acoustic and physical traits, and territory size. Playback experiments in the natural home ranges of receptive females revealed that tested females preferred the nearest speaker and did not discriminate between low and high call rates or dominant frequencies. CONCLUSIONS: Our results suggest that females of O. pumilio prefer the closest calling male in the studied population. We hypothesize that the sampling tactic in this population is affected by 1) a strongly female biased sex ratio and 2) a low variance in traits of available males due to strong male-male competition, preventing low quality males from defending a territory and mating.

Concepts: Male, Reproduction, Female, Sexual dimorphism, Gender, Sex, Gamete, Poison dart frog

173

INTRODUCTION: Primitively eusocial halictid bees are excellent systems to study the origin of eusociality, because all individuals have retained the ancestral ability to breed independently. In the sweat bee Halictus scabiosae, foundresses overwinter, establish nests and rear a first brood by mass-provisioning each offspring with pollen and nectar. The mothers may thus manipulate the phenotype of their offspring by restricting their food provisions. The first brood females generally help their mother to rear a second brood of males and gynes that become foundresses. However, the first brood females may also reproduce in their maternal or in other nests, or possibly enter early diapause. Here, we examined if the behavioural specialization of the first and second brood females was associated with between-brood differences in body size, energetic reserves and pollen provisions. RESULTS: The patterns of variation in adult body size, weight, fat content and food provisioned to the first and second brood indicate that H. scabiosae has dimorphic females. The first-brood females were significantly smaller, lighter and had lower fat reserves than the second-brood females and foundresses. The first-brood females were also less variable in size and fat content, and developed on homogeneously smaller pollen provisions. Foundresses were larger than gynes of the previous year, suggesting that small females were less likely to survive the winter. CONCLUSIONS: The marked size dimorphism between females produced in the first and second brood and the consistently smaller pollen provisions provided to the first brood suggest that the first brood females are channelled into a helper role during their pre-imaginal development. As a large body size is needed for successful hibernation, the mother may promote helping in her first brood offspring by restricting their food provisions. This pattern supports the hypothesis that parental manipulation may contribute to promote worker behaviour in primitively eusocial halictids.

Concepts: Insect, Mother, Honey, Bee, Ant, Eusociality, Halictidae, Gyne

170

Creation and use of the scientific names of animals are ruled by the International Code of Zoological Nomenclature. Until recently, publication of new names in a work produced with ink on paper was required for their availability. A long awaited amendment to the Code issued in September 2012 by the International Commission on Zoological Nomenclature now allows publication of new names in online-only works, provided that the latter are registered with ZooBank, the Official Register of Animal Names. With this amendment, the rules of zoological nomenclature have been aligned with the opportunities (and needs) of our digital era. However, possible causes for nomenclatural instability remain. These could be completely removed if the Code-compliant publication of new names will be identified with their online registration, under suitable technological and formal (legal) conditions. Future developments of the ZooBank may provide the tool required to make this definitive leap ahead in zoological nomenclature.

Concepts: Animal, Taxonomy, Noun, Binomial nomenclature, Name, International Code of Zoological Nomenclature, Nomenclature, International Code of Botanical Nomenclature

162

The monk parakeet (Myiopsitta monachus) is a widespread invasive species native to southern South America that has become established in many regions of the world. Monk parakeets breed in a large, fully enclosed structure built from twigs, which consist of one to many individual brooding chambers. The species has been considered to be socially and genetically monogamous. However, genetic relatedness of adults to juveniles in the native area was found to be lower than expected for monogamy. To assess the significance of this discrepancy, we examined individual and population genetic patterns of microsatellite loci at two sites in Cordoba province, Argentina.

Concepts: Genetics, Evolution, Biology, Population genetics, South America, Parrot, Parrots, Monk Parakeet

49

Female spiders are fine-tuned to detect and quickly respond to prey vibrations, presenting a challenge to courting males who must attract a female’s attention but not be mistaken for prey. This is likely particularly important at the onset of courtship when a male enters a female’s web. In web-dwelling spiders, little is known about how males solve this conundrum, or about their courtship signals. Here we used laser Doppler vibrometry to study the vibrations produced by males and prey (house flies and crickets) on tangle webs of the western black widow Latrodectus hesperus and on sheet webs of the hobo spider Tegenaria agrestis. We recorded the vibrations at the location typically occupied by a hunting female spider. We compared the vibrations produced by males and prey in terms of their waveform, dominant frequency, frequency bandwidth, amplitude and duration. We also played back recorded male and prey vibrations through the webs of female L. hesperus to determine the vibratory parameters that trigger a predatory response in females.

Concepts: Male, Female, Insect, Spider, Spider bite, Brown recluse spider, Hobo spider

40

Many legged animals change gaits when increasing speed. In insects, only one gait change has been documented so far, from slow walking to fast running, which is characterised by an alternating tripod. Studies on some fast-running insects suggested a further gait change at higher running speeds. Apart from speed, insect gaits and leg co-ordination have been shown to be influenced by substrate properties, but the detailed effects of speed and substrate on gait changes are still unclear. Here we investigate high-speed locomotion and gait changes of the cockroach Nauphoeta cinerea, on two substrates of different slipperiness.

Concepts: Insect, Arthropod, Animal, Running, Walking, Gait, Locomotion, Cockroach

32

‘Motion dazzle’ refers to the hypothesis that high contrast patterns such as stripes and zigzags may have evolved in a wide range of animals as they make it difficult to judge the trajectory of an animal in motion. Despite recent research into this idea, it is still unclear to what extent stripes interfere with motion judgement and if effects are seen, what visual processes might underlie them. We use human participants performing a touch screen task in which they attempt to ‘catch’ moving targets in order to determine whether stripe orientation affects capture success, as previous research has suggested that different stripe orientations may be processed differently by the visual system. We also ask whether increasing the number of targets presented in a trial can affect capture success, as previous research has suggested that motion dazzle effects may be larger in groups.

Concepts: Effect, Affect, Photoreceptor cell, Sensory system, Range of a projectile, Debut albums, Stripes, Blue Orchid

28

Gas exchangers fundamentally form by branching morphogenesis (BM), a mechanistically profoundly complex process which derives from coherent expression and regulation of multiple genes that direct cell-to-cell interactions, differentiation, and movements by signaling of various molecular morphogenetic cues at specific times and particular places in the developing organ. Coordinated expression of growth-instructing factors determines sizes and sites where bifurcation occurs, by how much a part elongates before it divides, and the angle at which branching occurs. BM is essentially induced by dualities of factors where through feedback- or feed forward loops agonists/antagonists are activated or repressed. The intricate transactions between the development orchestrating molecular factors determine the ultimate phenotype. From the primeval time when the transformation of unicellular organisms to multicellular ones occurred by systematic accretion of cells, BM has been perpetually conserved. Canonical signalling, transcriptional pathways, and other instructive molecular factors are commonly employed within and across species, tissues, and stages of development. While much still remain to be elucidated and some of what has been reported corroborated and reconciled with rest of existing data, notable progress has in recent times been made in understanding the mechanism of BM. By identifying and characterizing the morphogenetic drivers, and markers and their regulatory dynamics, the elemental underpinnings of BM have been more precisely explained. Broadening these insights will allow more effective diagnostic and therapeutic interventions of developmental abnormalities and pathologies in pre- and postnatal lungs. Conservation of the molecular factors which are involved in the development of the lung (and other branched organs) is a classic example of nature’s astuteness in economically utilizing finite resources. Once purposefully formed, well-tested and tried ways and means are adopted, preserved, and widely used to engineer the most optimal phenotypes. The material and time costs of developing utterly new instruments and routines with every drastic biological change (e.g. adaptation and speciation) are circumvented. This should assure the best possible structures and therefore functions, ensuring survival and evolutionary success. Key words: Lung, development, tracheal system, branching morphogenesis, growth factors.

Concepts: DNA, Gene, Gene expression, Evolution, Lung, Developmental biology, Cellular differentiation, Multicellular organism