Discover the most talked about and latest scientific content & concepts.

Journal: Frontiers in integrative neuroscience


For decades autism has been defined as a triad of deficits in social interaction, communication, and imaginative play. Though there is now broad acknowledgment of the neurological basis of autism, there is little attention paid to the contribution of such neurological differences to a person’s development and functioning. Communication, relationship, and participation require neurological systems to coordinate and synchronize the organization and regulation of sensory information and movement. Developmental differences in these abilities are likely to result in differences in the way a person behaves and expresses intention and meaning. The present paper shares our emerging awareness that people may struggle with difficulties that are not immediately evident to an outsider. This paper explores the symptoms of sensory and movement differences and the possible implications for autistic people. It provides a review of the history and literature that describes the neurological basis for many of the socalled behavioral differences that people experience. The paper emphasizes the importance of our acknowledgment that a social interpretation of differences in behavior, relationship, and communication can lead us far away from the lived experience of individuals with the autism label and those who support them. We suggest alternative ways to address the challenges faced by people with autism.

Concepts: Psychology, Person, Sociology, Autism, Writing, Asperger syndrome, Behavior, Social relation


Recent data suggest that the human body is not such a neatly self-sufficient island after all. It is more like a super-complex ecosystem containing trillions of bacteria and other microorganisms that inhabit all our surfaces; skin, mouth, sexual organs, and specially intestines. It has recently become evident that such microbiota, specifically within the gut, can greatly influence many physiological parameters, including cognitive functions, such as learning, memory and decision making processes. Human microbiota is a diverse and dynamic ecosystem, which has evolved in a mutualistic relationship with its host. Ontogenetically, it is vertically inoculated from the mother during birth, established during the first year of life and during lifespan, horizontally transferred among relatives, mates or close community members. This micro-ecosystem serves the host by protecting it against pathogens, metabolizing complex lipids and polysaccharides that otherwise would be inaccessible nutrients, neutralizing drugs and carcinogens, modulating intestinal motility, and making visceral perception possible. It is now evident that the bidirectional signaling between the gastrointestinal tract and the brain, mainly through the vagus nerve, the so called “microbiota-gut-vagus-brain axis,” is vital for maintaining homeostasis and it may be also involved in the etiology of several metabolic and mental dysfunctions/disorders. Here we review evidence on the ability of the gut microbiota to communicate with the brain and thus modulate behavior, and also elaborate on the ethological and cultural strategies of human and non-human primates to select, transfer and eliminate microorganisms for selecting the commensal profile.

Concepts: Psychology, Archaea, Bacteria, Gut flora, Metabolism, Organism, Escherichia coli, Cognition


Reentry in nervous systems is the ongoing bidirectional exchange of signals along reciprocal axonal fibers linking two or more brain areas. The hypothesis that reentrant signaling serves as a general mechanism to couple the functioning of multiple areas of the cerebral cortex and thalamus was first proposed in 1977 and 1978 (Edelman, 1978). A review of the amount and diversity of supporting experimental evidence accumulated since then suggests that reentry is among the most important integrative mechanisms in vertebrate brains (Edelman, 1993). Moreover, these data prompt testable hypotheses regarding mechanisms that favor the development and evolution of reentrant neural architectures.

Concepts: Central nervous system, Nervous system, Scientific method, Neuron, Brain, Human brain, Cerebral cortex, Axon


Understanding the influence of taste perception on food choice has captured the interest of academics, industry, and the general public, the latter as evidenced by the extent of popular media coverage and use of the term supertaster. Supertasters are highly sensitive to the bitter tastant propylthiouracil (PROP) and its chemical relative phenylthiocarbamide. The well-researched differences in taste sensitivity to these bitter chemicals are partially controlled by variation in the TAS2R38 gene; however, this variation alone does not explain the supertaster phenomenon. It has been suggested that density of papillae, which house taste buds, may explain supertasting. To address the unresolved role of papillae, we used crowdsourcing in the museum-based Genetics of Taste Lab. This community lab is uniquely situated to attract both a large population of human subjects and host a team of citizen scientists to research population-based questions about human genetics, taste, and health. Using this model, we find that PROP bitterness is not in any way predicted by papillae density. This result holds within the whole sample, when divided into major diplotypes, and when correcting for age, sex, and genotype. Furthermore, it holds when dividing participants into oft-used taster status groups. These data argue against the use of papillae density in predicting taste sensitivity and caution against imprecise use of the term supertaster. Furthermore, it supports a growing volume of evidence that sets the stage for hypergeusia, a reconceptualization of heightened oral sensitivity that is not based solely on PROP or papillae density. Finally, our model demonstrates how community-based research can serve as a unique venue for both study participation and citizen science that makes scientific research accessible and relevant to people’s everyday lives.

Concepts: Scientific method, Gene, Genetics, Evolution, Prediction, Taste, Taste bud, Supertaster


The current assessment of behaviors in the inventories to diagnose autism spectrum disorders (ASD) focus on observation and discrete categorizations. Behaviors require movements, yet measurements of physical movements are seldom included. Their inclusion however, could provide an objective characterization of behavior to help unveil interactions between the peripheral and the central nervous systems (CNSs). Such interactions are critical for the development and maintenance of spontaneous autonomy, self-regulation, and voluntary control. At present, current approaches cannot deal with the heterogeneous, dynamic and stochastic nature of development. Accordingly, they leave no avenues for real time or longitudinal assessments of change in a coping system continuously adapting and developing compensatory mechanisms. We offer a new unifying statistical framework to reveal re-afferent kinesthetic features of the individual with ASD. The new methodology is based on the non-stationary stochastic patterns of minute fluctuations (micro-movements) inherent to our natural actions. Such patterns of behavioral variability provide re-entrant sensory feedback contributing to the autonomous regulation and coordination of the motor output. From an early age, this feedback supports centrally driven volitional control and fluid, flexible transitions between intentional and spontaneous behaviors. We show that in ASD there is a disruption in the maturation of this form of proprioception. Despite this disturbance, each individual has unique adaptive compensatory capabilities that we can unveil and exploit to evoke faster and more accurate decisions. Measuring the kinesthetic re-afference in tandem with stimuli variations we can detect changes in their micro-movements indicative of a more predictive and reliable kinesthetic percept. Our methods address the heterogeneity of ASD with a personalized approach grounded in the inherent sensory-motor abilities that the individual has already developed.

Concepts: Central nervous system, Nervous system, Psychology, Autism, Control theory, Feedback, Behavior, Human behavior


Research suggests that a sub-set of children with autism experience notable difficulties and delays in motor skills development, and that a large percentage of children with autism experience deficits in motor resonance. These motor-related deficiencies, which evidence suggests are present from a very early age, are likely to negatively affect social-communicative and language development in this population. Here, we review evidence for delayed, impaired, and atypical motor development in infants and children with autism. We then carefully review and examine the current language and communication-based intervention research that is relevant to motor and motor resonance (i.e., neural “mirroring” mechanisms activated when we observe the actions of others) deficits in children with autism. Finally, we describe research needs and future directions and developments for early interventions aimed at addressing the speech/language and social-communication development difficulties in autism from a motor-related perspective.

Concepts: Critical thinking, Delay, Intervention, Communication, Motor skill, Motor neuron


Parents, teachers, and people who themselves experience sensory and movement differences have consistently reported disturbances of sensation and movement associated with autism. Our review of the literature has revealed both historical and recent references to and research about sensory and movement difference characteristics and symptoms for individuals with autism. What is notably infrequent in this literature, however, is research that highlights the perspective of the individual with autism. If we wish to truly understand the experience of sensory and movement differences for individuals with autism, we must explore their experiences and perspectives. This study presents a qualitative analysis of more than 40 h in-depth inquiry into the lives of five individuals with the autism label. Data were sorted into six categories: perception, action, posture, emotion, communication, and cognition. The insights into sensory and movement differences and autism offered by these individuals was illuminating. We found that the data strongly supported the presence of disruption of organization and regulation of sensory and movement differences in the lived experience of these participants with autism. The present data suggests that in autism this disruption of organization and regulation is amplified in terms of quantity, quality, intensity, and may affect everyday life. These data contribute to a more expansive view of autism that incorporates the possibility that autism is a disorder that affects motor planning, behavior, communication, the sensory motor system, and the dynamic interaction of all of these.

Concepts: Present, Psychology, Experience, Knowledge, Perspective


Autism can be conceived as an adaptive biological response to an early unexpected developmental change. Under such conceptualization one could think of emerging biological compensatory mechanisms with unique manifestations in each individual. Within a large group of affected people this would result in a highly heterogeneous spectral disorder where it would be difficult to tap into the hidden potentials of any given individual. A pressing question is how to treat the disorder while harnessing the capabilities and predispositions that the individual has already developed. It would indeed be ideal to use such strengths to accelerate the learning of self-sufficiency and independence, important as the person transitions into adulthood. In this report, we introduce a new concept for therapeutic interventions and basic research in autism. We use visuo-spatial and auditory stimuli to help augment the physical reality of the child and sensory-substitute corrupted kinesthetic information quantified in his/her movement patterns to help the person develop volitional control over the hand motions. We develop a co-adaptive child-computer interface that closes the sensory-motor feedback loops by alerting the child of a cause-effect relationship between the statistics of his/her real-time hand movement patterns and those of external media states. By co-adapting the statistics of the media states and those of the child’s real-time hand movements, we found that without any food/token reward the children naturally remained engaged in the task. Even in the absence of practice, the learning gains were retained, transferred and improved 2-4 weeks later. This new concept demonstrates that individuals with autism do have spontaneous sensory-motor adaptive capabilities. When led to their self-discovery, these patterns of spontaneous behavioral variability (SBV) morph into more predictive and reliable intentional actions. These can unlock and enhance exploratory behavior and autonomy in the individual with autism spectrum disorders (ASD).

Concepts: Person, Autism, Pervasive developmental disorder, Asperger syndrome, Autism spectrum, PDD-NOS, Individualism, Individual


The rising incidence of Autism Spectrum Disorders (ASDs) has led to a surge in the number of children needing autism interventions. This paper is a call to clinicians to diversify autism interventions and to promote the use of embodied music-based approaches to facilitate multisystem development. Approximately 12% of all autism interventions and 45% of all alternative treatment strategies in schools involve music-based activities. Musical training impacts various forms of development including communication, social-emotional, and motor development in children with ASDs and other developmental disorders as well as typically developing children. In this review, we will highlight the multisystem impairments of ASDs, explain why music and movement therapies are a powerful clinical tool, as well as describe mechanisms and offer evidence in support of music therapies for children with ASDs. We will support our claims by reviewing results from brain imaging studies reporting on music therapy effects in children with autism. We will also discuss the critical elements and the different types of music therapy approaches commonly used in pediatric neurological populations including autism. We provide strong arguments for the use of music and movement interventions as a multisystem treatment tool for children with ASDs. Finally, we also make recommendations for assessment and treatment of children with ASDs, and provide directions for future research.

Concepts: Medicine, Therapy, Autism, Pervasive developmental disorder, Asperger syndrome, Autism spectrum, Sociological and cultural aspects of autism, Music therapy


We review evidence that autistic spectrum disorders have their origin in early prenatal failure of development in systems that program timing, serial coordination and prospective control of movements, and that regulate affective evaluations of experiences. There are effects in early infancy, before medical diagnosis, especially in motor sequencing, selective or exploratory attention, affective expression and intersubjective engagement with parents. These are followed by retardation of cognitive development and language learning in the second or third year, which lead to a diagnosis of ASD. The early signs relate to abnormalities that have been found in brain stem systems and cerebellum in the embryo or early fetal stage, before the cerebral neocortex is functional, and they have clear consequences in infancy when neocortical systems are intensively elaborated. We propose, with evidence of the disturbances of posture, locomotion and prospective motor control in children with autism, as well as of their facial expression of interest and affect, and attention to other persons' expressions, that examination of the psychobiology of motor affective disorders, rather than later developing cognitive or linguistic ones, may facilitate early diagnosis. Research in this area may also explain how intense interaction, imitation or “expressive art” therapies, which respond intimately with motor activities, are effective at later stages. Exceptional talents of some autistic people may be acquired compensations for basic problems with expectant self-regulations of movement, attention and emotion.

Concepts: Psychology, Pregnancy, Fetus, Affect, Cerebral cortex, Autism, Pervasive developmental disorder, Autism spectrum