SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: European journal of histochemistry : EJH

2

Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation.

Concepts: Immune system, Nervous system, Antibody, Protein, Hormone, Receptor, Cannabinoid receptor, Myofascial release

0

Alveolar bone is not spontaneously regenerated following trauma or periodontitis. We previously proposed an animal model for new alveolar bone regeneration therapy based on the non-viral BMP-2/7 gene expression vector and in vivo electroporation, which induced the formation of new alveolar bone over the course of a week. Here, we analysed alveolar bone during a period of three weeks following gene transfer to periodontal tissue. Non-viral plasmid vector pCAGGS-BMP-2/7 or pCAGGS control was injected into palatal periodontal tissue of the first molar of the rat maxilla and immediately electroporated with 32 pulses of 50 V for 50 msec. Over the following three weeks, rats were double bone-stained by calcein and tetracycline every three days and mineral apposition rates (MAR) were measured. Double bone-staining revealed that MAR of alveolar bone was as similar level three days before BMP-2/7 gene transfer as three days after gene transfer. However, from 3 to 6 days, 6 to 9 days, 9 to 12 days, 12 to 15 days, 15 to 18 days, and 18 to 20 days after, MARs were significantly higher than prior to gene transfer. Our proposed gene therapy for alveolar bone regeneration combining non-viral BMP-2/7 gene expression vector and in vivo electroporation could increase alveolar bone regeneration potential in the targeted area for up to three weeks.

0

Acetylation tubulin is one of the major post-translational modifications of microtubules. Stable microtubules are well known to contain acetylated tubulin. Here, we examined the spatiotemporal expression of acetylated tubulin in the mouse cochlea during postnatal development. At postnatal day 1 (P1), acetylated tubulin was localized primarily to the auditory nerve inside the cochlea and their synaptic contacts with the inner and outer hair cells (IHCs and OHCs). In the organ of Corti, acetylated tubulin occurred first at the apex of pillar cells. At P5, acetylated tubulin first appeared in the phalangeal processes of Deiters' cells. At P8, staining was maintained in the phalangeal processes of Deiters' cells. At P10, labeling in Deiters' cells extended from the apices of OHCs to the basilar membrane. Labeling was expressed throughout the cytoplasm of pillar cells. At P12, acetylated tubulin displayed prominent and homogeneous labeling along the full length of the pillar cells. Linear labeling was present mainly in the Deiters' cell bodies underlying OHCs. Between P14 and P17, acetylated tubulin was strongly expressed in inner and outer pillar cells and Deiters' cells in a similar pattern as observed in the adult, and labeling in these cells were arranged in bundles. In addition, acetylated tubulin was intensely expressed in stria vascularis, root cell bodies, and a small number of fibrocytes of the spiral ligament until the adult. In the adult mouse cochlea, immunostaining continued to predominate in Deiters' cells and pillar cells. Immunolabeling formed cups securing OHCs basal portions, and continued presence of acetylated tubulin-labeled nerve terminals below IHCs was shown. Our results presented here underscored the essential role played by acetylated tubulin in postnatal cochlear development, auditory neurotransmission and cochlear mechanics.

0

A concomitant action of multiple profibrotic mediators appears crucial in the development and progression of fibrosis. Sphingosine kinase/sphingosine 1 phosphate and transforming growth factor-β/Smads pathways are both involved in pathogenesis of fibrosis in several organs by controlling differentiation of fibroblasts to myofibroblasts and the epithelial to-mesenchymal transition. However, their direct involvement in chronic colitis-associated fibrosis it is not yet known. In this study we evaluated the immunohistochemical expression of some proteins implicated in sphingosine kinase/sphingosine 1 phosphate and transforming growth factor-β/Smads pathways in Dextrane Sodium Sulphate (DSS)-induced colorectal fibrosis in mice. Compared to control mice, DSS-induced chronic colitis mice developed a marked intestinal fibrosis associated with a concomitant overexpression of TGF-β, p-Smad3, α-SMA, collagen I-III, SPHK1, RhoA, PI3K, Akt, p-Akt, p-mTOR. This study highlights the relationship between the two pathways and the possible role of SPHK1 in the intestinal fibrosis.  These results, if confirmed by in vitro studies, may have important clinical implications in the development of new therapeutical approaches in inflammatory bowel disease.

0

We report that, labeling mouse muscle tissue, with mouse monoclonal antibodies specific to slow or fast myosin heavy chain (sMyHC and fMyHC, respectively), can lead to artefactual labeling of damaged muscle fibers, as hybrid fibers (sMyHC+ and fMyHC+).  We demonstrate that such erroneous immunophenotyping of muscle may be avoided, by performing colabeling or serial-section-labeling, to identify damaged fibers. The quadriceps femoris muscle group (QF) in 7-month-old, male, C57BL/6J mice had: 1.21 ± 0.21%, 98.34 ± 1.06%, 0.07 ± 0.01%, and 0.53 ± 0.85% fibers, that were, sMyHC+, fMyHC+, hybrid, and damaged, respectively.  All fibers in the tibialis anterior muscle (TA) of 3-month-old, male, C57BL/6J mice were fMyHC+; and at 3 days after injurious eccentric contractions, there was no fiber-type shift, but ~ 18% fibers were damaged.

0

Cholinergic systems play a role in basic cerebral functions and its dysfunction is associated with deficit in neurodegenerative disease. Mechanisms involved in human brain diseases, are often approached by using fish models, especially cyprinids, given basic similarities of the fish brain to that of mammals. In the present paper, the organization of central cholinergic systems have been described in the cyprinid Cyprinus carpio, the common carp, by using specific polyclonal antibodies against ChAT, the synthetic enzyme of acetylcholine, that is currently used as a specific marker for cholinergic neurons in all vertebrates.  In this work, serial transverse sections of the brain and the spinal cord were immunostained for ChAT. Results showed that positive neurons are present in several nuclei of the forebrain, the midbrain, the hindbrain and the spinal cord. Moreover, ChAT-positive neurons were detected in the synencephalon and in the cerebellum. In addition to neuronal bodies, afferent varicose fibers were stained for ChAT in the ventral telencephalon, the preoptic area, the hypothalamus and the posterior tuberculum. No neuronal cell bodies were present in the telencephalon. The comparison of cholinergic distribution pattern in the Cyprinus carpio central nervous system has revealed similarities but also some interesting differences with other cyprinids. Our results provide additional information on the cholinergic system from a phylogenetic point of view and may add new perspectives to physiological roles of cholinergic system during evolution and the neuroanatomical basis of neurological diseases.

0

Epidemiological studies have shown an association between hypertension and knee osteoarthritis (OA). The purpose of this study was to investigate whether activation of the renin-angiotensin system (RAS) can aggravate mechanical loading-induced knee OA in mice. Eight-week-old male Tsukuba hypertensive mice (THM) and C57BL/6 mice were divided into running and non-running groups. Mice in the running group were forced to run (25 m/min, 30 min/day, 5 days/week) on a treadmill. All mice in the four groups (n=10 in each group) were euthanized after 0, 2, 4, 6, or 8 weeks of running or natural breeding. Cartilage degeneration in the left knees was histologically evaluated using the modified Mankin score. Expression of Col X, MMP-13, angiotensin type 1 receptor (AT1R), and AT2R was examined immunohistochemically. To study the effects of stimulation of the AT1R in chondrocytes by mechanical loading and/or Angiotensin II (AngII) on transduction of intracellular signals, phosphorylation levels of JNK and Src were measured in bovine articular chondrocytes cultured in three-dimensional agarose scaffolds. After 4 weeks, the mean Mankin score for the lateral femoral condylar cartilage was significantly higher in the THM running group than in the C57BL/6 running group and non-running groups. AT1R and AT2R expression was not detected at 0 weeks in any group but was noted after 4 weeks in the THM running group. AT1R expression was also noted at 8 weeks in the C57BL/6 running group. The expression levels of AT1R, COL X, and MMP-13 in chondrocytes were significantly higher in the THM running group than in the control groups. Positive significant correlations were noted between the Mankin score and the rate of AT1R-immunopositive cells, between the rates of AT1R- and Col X-positive cells, and between the rates of AT1R- and AT2R-positive cells. The phosphorylation level of JNK was increased by cyclic compression loading or addition of AngII to the cultured chondrocytes and was reversed by pretreatment with an AT1R blocker. A synergistic effect on JNK phosphorylation was observed between compression loading and AngII addition. Transgene activation of renin and angiotensinogen aggravated mechanical load-induced knee OA in mice. These findings suggest that AT1R expression in chondrocytes is associated with early knee OA and plays a role in the progression of cartilage degeneration. The RAS may be a common molecular mechanism involved in the pathogenesis of hypertension and knee OA.

0

Skeletal muscle fibre types, whose characteristics are determined by myosin heavy chain (MyHC) isoforms, can adapt to changed physiological demands with changed MyHC isoform expression resulting in the fibre type transitions. The endurance training is known to induce fast-to-slow transitions and has beneficial effect in carcinogenesis, whereas the effect of an excessive fat intake and its interaction with the effect of swimming are less conclusive. Therefore, we studied the effect of high-fat mixed lipid (HFML) diet and long-term (21-week) swimming on fibre type transitions and their average diameters by immunohistochemical demonstration of MyHC isoforms in slow soleus (SOL), fast extensor digitorum longus (EDL), and mixed gastrocnemius medialis and lateralis (GM, GL) muscles, divided to deep and superficial portions (GMd, GMs, GLd, GLs), of sedentary and swimming Wistar rats with experimentally (dimethylhydrazine) induced colon tumours and fed either with HFML or low-fat corn oil (LFCO) diet. HFML diet induced only a trend for fast-to-slow transitions in SOL and in the opposite direction in GMd. Swimming triggered significant transitions in unexpected slow-to-fast direction in SOL, whereas in GMs the transitions had tendency to proceed in the expected fast-to-slow direction. The average diameters of fibre types were mostly unaffected. Hence, it can be concluded that if present, the effects of HFML diet and swimming on fibre type transitions were counteractive and muscle-specific implying that each muscle possesses its own adaptive range of response to changed physiological conditions.

0

Gastric cancer (GC) is the second most common cause of cancer-related deaths in the world. This study aims to investigate the differential tissue expression of ppGalNAc-T15 and to evaluate its possible association with clinical-pathological parameters and outcome of gastric adenocarcinoma patients. For these 70 patients were evaluated the expression by immunohistochemistry to ppGalNAc-T15. Our results showed that 33 (47.1%) patients were ppGalNAC-T15+ positive and 37 (52.9%) negative. Positive staining for ppGalNAc-T15 was significantly present in patients older than 60 years (P=0.0306) and submitted to total gastrectomy (P=0.0087). Also, some results remained at the limit of significance as surgical standing (P=0.0562) and histological grade (P=0.0549). Therefore, the ppGalNAc-T15 immunoreactivity can be useful to understand the prognosis of patients with gastric cancer.

0

The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample.

Concepts: DNA, Scientific method, Electron, Cancer, Electromagnetic radiation, Chemical element, X-ray crystallography, Energy-dispersive X-ray spectroscopy