Discover the most talked about and latest scientific content & concepts.

Journal: Environmental toxicology and pharmacology


The objectives of the present study were to investigate the effects of acute exposure to PBDEs on retinoid signaling in fish. Zebrafish embryos (2h post-fertilization, hpf) were exposed to DE-71 (0, 31.0, 68.7, and 227.6μg/L) until 120hpf. Retinoid profiles showed the content of retinal and retinoic acid was reduced significantly. While a significant up-regulation was observed in the transcription of retinal dehydrogenase (raldh2), the transcription of retinol binding protein (rbp1a), retinol dehydrogenase (rdh1), cellular retinoic acid binding protein (crabp1a and crabp2a) and retinoic acid receptor subunit (raraa) were down-regulated significantly, indicating disruption of retinoid signaling. However, the transcriptions of five opsin genes (zfrho, zfuv, zfred, zfblue, and zfgr1) were up-regulated. Furthermore, whole mount immunostaining and western blotting demonstrated increased rhodopsin protein expression in the exposure groups. Overall, the results indicated that acute exposure to PBDEs could disturb retinoid signaling and may impact on eye development of zebrafish larvae.

Concepts: Protein, Gene, Molecular biology, Retinol, Vitamin A, Retinal, Retinoic acid receptor, Retinoic acid


Correlation between exposure to glyphosate and sperm concentrations is important in reproductive toxicity risk assessment for male reproductive functions. Many studies have focused on reproductive toxicity on glyphosate, however, results are still controversial. We conducted a systematic review of epidemiological studies on the association between glyphosate exposure and sperm concentrations of rodents. The aim of this study is to explore the potential adverse effects of glyphosate on reproductive function of male rodents.

Concepts: Epidemiology, Reproduction, Function, Evaluation, Risk, Concentration, The Association, Meta-analysis


Fluorosis, caused by ingestion of excess fluoride, is endemic in at least 25 countries across the globe, China and India being the worst affected among them. Dental, skeletal and non-skeletal are the major types of fluorosis affecting millions of people in these countries. A number of genetic epidemiological studies carried out by investigators have shown the evidence for association between genetic polymorphisms in candidate genes and differences in the susceptibility pattern of different types of fluorosis among individuals living in the same community and having the same environmental exposure. These studies have pointed out that genetic variants in some candidate genes like COL1A2 (Collagen type 1 alpha 2), CTR (Calcitonin receptor gene), ESR (Estrogen receptor), COMT (Catechol-o-methyltransferase), GSTP1 (Glutathione S-transferase pi 1), MMP-2 (Matrix metallopeptidase 2), PRL (Prolactin), VDR (Vitamin D receptor) and MPO (Myeloperoxidase) could increase or decrease the risk of fluorosis among the exposed individuals in endemic areas. So, it is increasingly becoming evident that an individual’s genetic background could play a major role in influencing the risk to fluorosis when other factors like specific environmental exposures including dietary patterns of fluoride intake and other nutrients remain the same. The current manuscript presents an up-to-date critical review on fluorosis, focusing mainly on the genetic association studies that have looked at the possible involvement of genetic factors in fluorosis.

Concepts: Protein, Vitamin D, Gene, Genetics, Epidemiology, Genetic association, Dental fluorosis, Calcitonin receptor


Ibuprofen is a pharmaceutical drug widely used by the global population and it has been found in aquatic ecosystems in several countries. This study evaluated the effects of ibuprofen in environmental concentrations (0, 0.1, 1 and 10 μg/L) on the freshwaterspecies Rhamdia quelen exposed for 14 days. In the posterior kidney, ibuprofen increased glutathione-S-transferase activity in all groups exposed. Furthermore, increased glutathione peroxidase activity and the levels of reduced glutathione in the group exposed to 10 μg/L. Ibuprofen decreased the carbonic anhydrase activity in the posterior kidney in all exposed groups, and increased the activity in the gills in group exposed to 0.1 μg/L. The levels of plasma magnesium increased in groups exposed to 0.1 and 1 μg/L. In the blood, ibuprofen decreased the white blood cell count in groups exposed to 0.1 e 1.0 μg/L. Therefore, these results indicated that ibuprofen caused nephrotoxicity and demonstrated immunosuppressive effect in Rhamdia quelen.

Concepts: Carbon dioxide, Glutathione, Thrombocytopenia, Glutathione peroxidase, Glutathione S-transferase, Peroxidase, Acetylcysteine


Glyphosate based herbicides (GBH) like Roundup(®) are used extensively in agriculture as well as in urban and rural settings as a broad spectrum herbicide. Its mechanism of action was thought to be specific only to plants and thus considered safe and non-toxic. However, mounting evidence suggests that GBHs may not be as safe as once thought as initial studies in frogs suggest that GBHs may be teratogenic. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate exposure using technical grade glyphosate and the Roundup(®) Classic formulation. We find morphological abnormalities including cephalic and eye reductions and a loss of delineated brain ventricles. Concomitant with structural changes in the developing brain, using in situ hybridization analysis, we detect decreases in genes expressed in the eye, fore and midbrain regions of the brain including pax2, pax6, otx2 and ephA4. However, we do not detect changes in hindbrain expression domains of ephA4 nor exclusive hindbrain markers krox-20 and hoxb1a. Additionally, using a Retinoic Acid (RA) mediated reporter transgenic, we detect no alterations in the RA expression domains in the hindbrain and spinal cord, but do detect a loss of expression in the retina. We conclude that glyphosate and the Roundup(®) formulation is developmentally toxic to the forebrain and midbrain but does not affect the hindbrain after 24h exposure.

Concepts: Central nervous system, Brain, Retina, Eye, Cerebrospinal fluid, Neural tube, Ventricular system, Glyphosate


There are few studies documenting the dust loaded with pesticides as a potential non-dietary exposure source for occupational worker and populations living near agricultural farms and pesticides formulation plants. In present study we have evaluated the pesticide concentration in dust from potential sites and relevant health risk from dust ingestion. Furthermore, the effect of currently used pesticides was investigated on blood and urine parameters of subjects: farmer, factory worker, urban resident and rural resident and controlled subjects with presumably different levels of exposure. The urinary metabolites (TCPY and IMPY) were quantified as biomarkers of exposure to chlorpyrifos and diazinon in relation with biomarkers of effect including BuChE, LH, FSH, testosterone and oxidative stress. Results showed that chlorpyrifos and diazinon were present in higher concentration in dust and posed a high health risk to exposed subjects. The mean SOD value was high among the farmer (3048U/g Hb) followed by factory worker (1677.6U/g Hb). The urinary biomarkers - TCPY and IMPY- were found higher in exposed subjects as compared to control. Furthermore, testosterone was found in higher concentration in factory worker than control (12.63ng/ml vs 4.61ng/ml respectively). A decreased BuChE activity was noticed in occupational group and significant differences were observed in control verses exposed subjects. The PCA analysis evidenced the impact of pesticides on exposure biomarkers and male reproductive hormones. The study suggests that dust contaminated with pesticides engenders significant health risk particularly related to the nervous and endocrine system, not only for occupational workers exposed to direct ingestion but also for nearby residential community. Succinctly putting: Pesticides loaded dust in the city of Lahore, being a high priority concern for the government of Pakistan, demands to be addressed.

Concepts: Kidney, Pesticide, Endocrine system, Insecticide, Pakistan, Chlorpyrifos, Lahore, Factory


Plastics are indispensable and persistent materials used in daily life that can be fragmented into micro- or nanoplastics. They are long polymer chains mixed with additives that can be toxic when in contact with distinct species. The toxicity can result from polymer matrix, additives, degradation products and adsorbed contaminants. Notwithstanding, there is still an immense gap of information concerning the individual and mixed impacts of plastics. Hence, in this study, we characterize the most common plastic materials widely used in our daily life by its polymer type and compile the environmental and human health hazards of these polymers including the impacts of monomers, additives, degradation products and adsorbed contaminants based on literature review. In summary, polyvinyl chloride is the most toxic polymer type used daily (monomer and additives); additives are more toxic than monomers to wildlife and humans; and the most toxic additives are benzene, phthalates and lead stabilisers.


Environmental factors could have a key role in the continuous and remarkable decline of sperm quality observed in the last decades. This study compared the seminal parameters and sperm DFI in men living in areas with different levels of air pollution. Results demonstrate that both steel plants workers and patients living in a high polluted area show a mean percentage of sperm DNA fragmentation above 30%, highlighting a clear sperm damage. In this work, two different techniques were used to measure sperm DNA damage in patients' groups, finding in both cases a high sperm DFI in patients living in polluted areas. We candidate sperm DNA fragmentation as a valuable early marker of the presence and harmful effects of pollution. We suggest that sperm DNA evaluation could be both an indicator of individual health and reproductive capacity, and a suitable datum to connect the surrounding environment with its effects.

Concepts: DNA, Reproduction, Environment, Semen, Pollution, Environmentalism, Cruise ship pollution


Understanding the effect of wildfire smoke exposure on human health represents a unique interdisciplinary challenge to the scientific community. Population health studies indicate that wildfire smoke is a risk to human health and increases the healthcare burden of smoke-impacted areas. However, wildfire smoke composition is complex and dynamic, making characterization and modeling difficult. Furthermore, current efforts to study the effect of wildfire smoke are limited by availability of air quality measures and inconsistent air quality reporting among researchers. To help address these issues, we conducted a substantive review of wildfire smoke effects on population health, wildfire smoke exposure in occupational health, and experimental wood smoke exposure. Our goal was to evaluate the current literature on wildfire smoke and highlight important gaps in research. In particular we emphasize long-term health effects of wildfire smoke, recovery following wildfire smoke exposure, and health consequences of exposure in children.

Concepts: Health care, Health economics, Medicine, Public health, Health, Epidemiology, Population health, Smoke


The potential protective effect of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated against doxorubicin cardiotoxicity in rats. Cardiotoxicity was induced by six equal doses of doxorubicin (2.5mgkg(-1) i.p., each) given at 48h intervals over two weeks to achieve a total dose of 15mgkg(-1). Cannabidiol treatment (5mgkg(-1)/day, i.p.) was started on the same day of doxorubicin administration and continued for four weeks. Cannabidiol significantly reduced the elevations of serum creatine kinase-MB and troponin T, and cardiac malondialdehyde, tumor necrosis factor-α, nitric oxide and calcium ion levels, and attenuated the decreases in cardiac reduced glutathione, selenium and zinc ions. Histopathological examination showed that cannabidiol ameliorated doxorubicin-induced cardiac injury. Immunohistochemical analysis revealed that cannabidiol significantly reduced the expression of inducible nitric oxide synthase, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin in cardiac tissue of doxorubicin-treated rats. These results indicate that cannabidiol represents a potential protective agent against doxorubicin cardiac injury.

Concepts: Antioxidant, Aluminium, Endothelium, Oxide, Sodium, Nitric oxide, Vasodilation, Nitric oxide synthase