Discover the most talked about and latest scientific content & concepts.

Journal: Environmental science and pollution research international


Metals deposited into ecosystems are non-degradable and become one of the major toxic agents which accumulate in habitats. Thus, their concentration requires precise monitoring. To evaluate pollution around a chlor-alkali plant, a glass smelter, two power plants and a ceramic and porcelain factory, we selected terrestrial mosses with different life forms: the orthotropic and endohydric Polytrichum commune and plagiotropic and ectohydric Pleurozium schreberi. Metal concentrations were determined in both species growing together at sites situated at various distances approximately 0.75, 1.5, 3 and 6 km from polluters. MARS analysis evaluated different tendencies of both species for Cd, Co and Pb accumulation depending on the distance from the emitter. In P. schreberi, the concentration of these metals diminished relatively rapidly with an increasing distance from the emitter up to 3000 m and then stabilised. For P. commune, a steady decrease could be observed with increasing the distance up to 6000 m. PCCA ordination explained that both species from the vicinity of the chlor-alkali plant were correlated with the highest Co, Cr, Cu, Fe and Pb as well as Mn and Ni concentrations in their tissues. The mosses from sites closest to both power plants were correlated with the highest Cd and Zn concentrations. P. commune contained significantly higher Cd, Cr, Ni, Pb and Zn concentrations compared to P. schreberi. This may be caused by the lamellae found in the leaves of P. commune which increase the surface area of the possible aerial absorption of contaminants. Soil may also be an additional source of metals, and it affects the uptake in endohydric P. commune more than in ectohydric P. schreberi. However, the precise explanation of these relations needs further investigation.

Concepts: Iron, Plant, Metal, Copper, Pollution, Moss, Mosses, Polytrichum commune


Presented are results of a study on accumulation and distribution of (210)Po and (210)Pb in the fruitbodies of parasol mushroom (Macrolepiota procera) and risk to human consumer due to exposure from highly radiotoxic decay particles emitted by both radionuclides. Mushrooms were collected from 16 forested places in central and northern regions of Poland. Activity concentrations of (210)Po and (210)Pb were determined after radiochemical separation of nuclides and subsequent measurement using validated method and alpha spectrometer. Results showed on spatially heterogeneous distribution of the (210)Po and (210)Po activity concentrations in M. procera and two interpolation maps were prepared. Activity concentrations of nuclides in dried caps of M. procera were in the range from 3.38 ± 0.41 to 16.70 ± 0.33 Bq∙(210)Po ∙kg(-1) and from 5.11 ± 0.21 to 13.42 ± 0.30 Bq∙(210)Pb ∙kg(-1). Consumption of M. procera foraged in central and northern Poland should not contribute significantly to the annual effective radiation doses from (210)Po and (210)Pb due to amount of both nuclides accumulated by fungus in caps.

Concepts: Ionizing radiation, Fungus, Radioactive decay, Mushroom, Agaricales, Macrolepiota, Parasol mushroom, Shaggy parasol


It is now well established that the oceans contain significant accumulations of plastic debris but only very recently have studies began to look at sources of microplastics (MPs) in river catchments. This work measured MPs up- and downstream of six wastewater treatment plants (WWTPs) in different catchments with varying characteristics and found that all led to an increase in MPs in rivers. Nevertheless, the data collected indicated that there were other important sources of MPs in the catchments studied and that these may include atmospheric deposition, agricultural land to which sewage sludge has been applied, and diffuse release of secondary MPs following the breakdown of larger plastic items. MPs were comprised mainly of fibres, fragments, and flakes with pellets and beads only dominating at one site. Variation in MP pollution occurred over time and this difference was greater at some sites than others. A key research need is the further study of MP sources in river catchments to facilitate management efforts to reduce their presence in freshwater and marine environments.


The present study was focused on the effect of increasing urbanization including industrial and traffic activity on the accumulation of heavy metals and possible damage of selected physiological parameters (composition of assimilation pigments, membrane lipid peroxidation, and membrane integrity) of an epiphytic foliose lichen, Flavoparmelia caperata (L.) Hale. The lichen samples were collected from three different localities in and around Kolkata, India, two sites being from the urban area and one from the relatively non-polluted sub-urban area. The results showed that thalli from the urban sites have significantly higher concentrations of Fe, Cr, Cu, Zn, and Pb compared to those collected from the sub-urban site. Physiological parameters of damage also exhibited stress symptoms in thalli from the urban sites-decreased chlorophyll a indicating less photosynthetic efficiency, and increase in lipid peroxidation and electrolyte conductivity indicating cell membrane injuries. Correlation studies among metals pinpointed vehicular traffic as the main source of pollution in this area.

Concepts: City, Urban area, São Paulo, Urbanization, Suburb, Lichen, Village, Town


Both nitrate and pentachlorophenol (PCP) are familiar pollutants in aqueous environment. This research is focused on the simultaneous removal of nitrate and PCP from simulated contaminated groundwater using a laboratory-scale denitrification reactor packed with corncob as both carbon source and biofilm support. The reactor could be started up readily, and the removal efficiencies of nitrate and PCP reached up to approximately 98 % and 40-45 % when their initial concentrations were 50 mg N/L and 5 mg/L, respectively, after 15-day continuous operation at 10 h of hydraulic retention time (HRT) and 25 °C. Approximately 91 % of PCP removal efficiency was achieved, with 2.47 mg/L of chloride ion release at 24 h of HRT. Eighty-two percent of chlorine in PCP removed was ionized. The productions of 3-chlorophenol and phenol and chloride ion release indicate that the reductive dechlorination reaction is a major degradation pathway of PCP under the experimental conditions.

Concepts: Concentration, Chemistry, Water pollution, Sodium chloride, Ion, Chlorine, Chloride, Hydrogen chloride


Concentrations of 22 polycyclic aromatic hydrocarbons (PAHs) were estimated for individual particle-size distributions at the airport apron of the Taipei International Airport, Taiwan, on 48 days in July, September, October, and December of 2011. In total, 672 integrated air samples were collected using a micro-orifice uniform deposition impactor (MOUDI) and a nano-MOUDI. Particle-bound PAHs (P-PAHs) were analyzed by gas chromatography with mass selective detector (GC/MSD). The five most abundant species of P-PAHs on all sampling days were naphthalene (NaP), phenanthrene (PA), fluoranthene (FL), acenaphthene (AcP), and pyrene (Pyr). Total P-PAHs concentrations were 152.21, 184.83, and 188.94 ng/m(3) in summer, autumn, and winter, respectively. On average, the most abundant fractions of benzo[a]pyrene equivalent concentration (BaPeq) in different molecular weights were high-weight PAHs (79.29 %), followed by medium-weight PAHs (11.57 %) and low-weight PAHs (9.14 %). The mean BaPeq concentrations were 1.25 and 0.94 (ng/m(3)) in ultrafine particles (<0.1 μm) and nano-particles (<0.032 μm), respectively. The percentages of total BaPeq in nano- and ultrafine particulate size ranges were 52.4 % and 70.15 %, respectively.

Concepts: Polycyclic aromatic hydrocarbon, Aromaticity, Airport, Naphthalene, Phenanthrene, Polycyclic aromatic hydrocarbons, Pyrene, Fluoranthene


The release of pharmaceuticals in the environment, as parent compounds, metabolites and transformation products, and the consequent risks posed to living organisms due to the unintended exposure of the latter to these chemicals are nowadays of increasing scientific concern. The development of advanced oxidation processes able to degrade these substances is in the core of the current research objectives, the main target being the removal of these compounds from wastewaters. Often the focus is on the removal of the parent compound only. However, these processes can form transformation products. Knowledge on the risk related to such transformation products is scarce. Among others, knowledge on their toxic effects and their biodegradability is of importance not only when they are present in the environment but also for the assessment of the advanced oxidation processes' efficiency applied for their degradation. Photolytic (UV irradiation) and photocatalytic treatment (UV irradiation in the presence of TiO(2)) of the fluoroquinolone ofloxacin were applied, and the biodegradability of the formed products was investigated using the Closed Bottle test (OECD 301 D). Various transformation products, formed both during the photo(cata)lytic treatment and the Closed Bottle test, were identified using chromatographic analysis with an ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) system. The transformation products formed during the phototreatments were found to be non-readily biodegradable as the biodegradation percentages were close to zero. The persistence of the various photo(cata)lytic transformation products during the Closed Bottle test may be attributed to the fluorine present in all the transformation products formed. The transformation products identified suggest that two transformation routes were present: decarboxylation and opening of the piperazinyl ring. Interestingly, it was observed that in the presence of a readily biodegradable carbon source (sodium acetate), the biodegradation percentage increased drastically for some of the photolytically treated samples. This was not the case for the photocatalytically treated samples, in which also mineralization of the parent compound was achieved faster. Further research is needed, however, in order to increase the understanding of the conditions that may lead to less potent and persistent substances during the application of such engineered or natural processes.

Concepts: Chromatography, Biodegradation, Liquid chromatography-mass spectrometry, Bioremediation, Microbial biodegradation, Biodegradability prediction


In this work, removal of arsenic (III) from aqueous solution by living cells (Bacillus cereus), biosorption mechanism, and characterization studies have been reported. B. cereus cell surface was characterized using SEM-EDX and FTIR. Dependence of biosorption on pH of the solution, biosorbent dose, initial arsenic (III) concentration, contact time, and temperature had been studied to achieve optimum condition. The maximum biosorption capacity of living cells of B. cereus for arsenic (III) was found to be 32.42 mg/g at pH 7.5, at optimum conditions of contact time of 30 min, biomass dosage of 6 g/L, and temperature of 30 ± 2 °C. Biosorption data of arsenic (III) are fitted to linearly transformed Langmuir isotherm with R (2) (correlation coefficient) > 0.99. The pseudo-second-order model description of the kinetics of arsenic (III) is successfully applied to predict the rate constant of biosorption. Thermodynamic parameters reveal the endothermic, spontaneous, and feasible nature of sorption process of arsenic (III) onto B. cereus biomass. The arsenic (III) ions are desorbed from B. cereus using both 1 M HCl and 1 M HNO(3).

Concepts: Bacteria, Concentration, Chemistry, Thermodynamics, Bacillus, Solutions, Endospore, Bacillus cereus


Safe and sufficient quantity of water is necessary for a healthy growth of human beings. The gap between water demand and available water supply is increasing day by day. Proper sanitation, especially decentralized approach, can solve the problem of water supply and wastewater management and that can be done by reuse of greywater. Typically, from a household, greywater (GW) flow is around 65 % of the total wastewater flow. Further light greywater is around 50 % of the total GW. Hence, GW has a high potential for recycle and reuse. The aim of this article is to reveal the present state of art in GW treatment and to identify the further scope for research. Present article contains a review on per capita GW generation, GW characteristics, and its treatment. Around 22 treatment systems comprising different treatment processes are discussed in detail for removal efficiency of pollutants, effluent concentrations and their compliance with wastewater reuse guidelines and standards. Constructed wetland and filtration were found efficient in the removal of most of the reuse parameters compared to other technologies. Anaerobic followed by aerobic system with post-disinfection unit may be a sustainable option for GW treatment for reuse. There is a need to develop the technologies for GW treatment at household level to increase the reuse practises at grass root level. Further, there is need of development of flow diagram with different technologies by targeting the type of reuse (flushing, gardening, agriculture, etc.).

Concepts: Water, Water pollution, Sewage treatment, Wastewater, Sanitation, Water supply, Reclaimed water, Greywater


Recent studies have shown up to 6 % of rivers in England and Wales to be impacted by discharges from abandoned metal mines. Despite the large extent of impacts, there are still many areas where mine water impact assessments are limited by data availability. This study provides an overview of water quality, trace element composition and flux arising from one such area; the Yorkshire Pennine Orefield in the UK. Mine drainage waters across the orefield are characterised by Ca-HCO(3)-SO(4)-type waters, with moderate mineralization (specific electrical conductance: 160-525 μS cm(-1)) and enrichment of dissolved Zn (≤2003 μg L(-1)), Ba (≤971 μg L(-1)), Pb (≤183 μg L(-1)) and Cd (≤12 μg L(-1)). The major ion composition of the waters reflects the Carboniferous gritstone and limestone-dominated country rock, the latter of which is heavily karstified in parts of the orefield, while sulphate and trace element enrichment is a product of the oxidation of galena, sphalerite and barite mineralization. Contaminant flux measurements at discharge sites highlight the disproportionate importance of large drainage levels across the region, which generally discharge into first-order headwater streams. Synoptic metal loading surveys undertaken in the Hebden Beck sub-catchment of the river Wharfe highlight the importance of major drainage levels to instream baseflow contamination, with diffuse sources from identifiable expanses of waste rock becoming increasingly prominent as river flows increase.

Concepts: Water, United Kingdom, England, River Wharfe, Hebden, North Yorkshire, Yorkshire, Pennines, Wharfedale