SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Environmental pollution (Barking, Essex : 1987)

276

Microplastics are highly bioavailable to marine organisms, either through direct ingestion, or indirectly by trophic transfer from contaminated prey. The latter has been observed for low-trophic level organisms in laboratory conditions, yet empirical evidence in high trophic-level taxa is lacking. In natura studies face difficulties when dealing with contamination and differentiating between directly and indirectly ingested microplastics. The ethical constraints of subjecting large organisms, such as marine mammals, to laboratory investigations hinder the resolution of these limitations. Here, these issues were resolved by analysing sub-samples of scat from captive grey seals (Halichoerus grypus) and whole digestive tracts of the wild-caught Atlantic mackerel (Scomber scombrus) they are fed upon. An enzymatic digestion protocol was employed to remove excess organic material and facilitate visual detection of synthetic particles without damaging them. Polymer type was confirmed using Fourier-Transform Infrared (FTIR) spectroscopy. Extensive contamination control measures were implemented throughout. Approximately half of scat subsamples (48%; n = 15) and a third of fish (32%; n = 10) contained 1-4 microplastics. Particles were mainly black, clear, red and blue in colour. Mean lengths were 1.5 mm and 2 mm in scats and fish respectively. Ethylene propylene was the most frequently detected polymer type in both. Our findings suggest trophic transfer represents an indirect, yet potentially major, pathway of microplastic ingestion for any species whose feeding ecology involves the consumption of whole prey, including humans.

Concepts: Digestive system, Digestion, Apex predator, Pinniped, Gray Seal, Scombridae, Atlantic mackerel, Mackerel

169

Temporal trends of Persistent Organic Pollutants (POPs) measured in Arctic air are essential in understanding long-range transport to remote regions and to evaluate the effectiveness of national and international chemical control initiatives, such as the Stockholm Convention (SC) on POPs. Long-term air monitoring of POPs is conducted under the Arctic Monitoring and Assessment Programme (AMAP) at four Arctic stations: Alert, Canada; Stórhöfði, Iceland; Zeppelin, Svalbard; and Pallas, Finland, since the 1990s using high volume air samplers. Temporal trends observed for POPs in Arctic air are summarized in this study. Most POPs listed for control under the SC, e.g. polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and chlordanes, are declining slowly in Arctic air, reflecting the reduction of primary emissions during the last two decades and increasing importance of secondary emissions. Slow declining trends also signifies their persistence and slow degradation under the Arctic environment, such that they are still detectable after being banned for decades in many countries. Some POPs, e.g. hexachlorobenzene (HCB) and lighter PCBs, showed increasing trends at specific locations, which may be attributable to warming in the region and continued primary emissions at source. Polybrominated diphenyl ethers (PBDEs) do not decline in air at Canada’s Alert station but are declining in European Arctic air, which may be due to influence of local sources at Alert and the much higher historical usage of PBDEs in North America. Arctic air samples are screened for chemicals of emerging concern to provide information regarding their environmental persistence (P) and long-range transport potential (LRTP), which are important criteria for classification as a POP under SC. The AMAP network provides consistent and comparable air monitoring data of POPs for trend development and acts as a bridge between national monitoring programs and SC’s Global Monitoring Plan (GMP).

Concepts: Canada, Norway, Persistent organic pollutant, Arctic Ocean, Polychlorinated biphenyl, Persistent organic pollutants, Biphenyl, Polychlorinated dibenzodioxins

34

We measured size-resolved PNCs in the 5-560 nm range at two different types (4- and 3-way) of TIs in Guildford (Surrey, UK) at fixed sites (∼1.5 m above the road level), sequentially at 4 different heights (1, 1.5, 2.5 and 4.7 m), and along the road at five different distances (10, 20, 30, 45 and 60 m). The aims were to: (i) assess the differences in PNCs measured at studied TIs, (ii) identify the best fit probability distribution curves for the PNCs, (iii) determine vertical and horizontal decay profiles of PNCs, (iv) estimate particle number emission factors (PNEFs) under congested and free-flow traffic conditions, and (v) quantify the pedestrian exposure in terms of respiratory deposition dose (RDD) rates at the TIs. Daily averaged particle number distributions at TIs reflected the effect of fresh emissions with peaks at 5.6, 10 and 56 nm. Despite the relatively high traffic volume at 3-way TI, average PNCs at 4-way TI were about twice as high as at 3-way TI, indicating less favourable dispersion conditions. Generalised extreme value distribution fitted well to PNC data at both TIs. Vertical PNC profiles followed an exponential decay, which was much sharper at 4-way TI than at 3-way TI, suggesting ∼40% less exposure for people at first floor (4.7 m) to those at ground floor around 4-way TI. Vertical profiles indicated much sharper (∼132-times larger) decay than in horizontal direction, due to close vicinity of road vehicles during the along-road measurements. Over an order of magnitude higher PNEFs were found during congested, compared with free-flow, conditions due to frequent changes in traffic speed. Average RDD rate at 4-way TI during congested conditions were up to 14-times higher than those at 3-way TI (0.4 × 10(11) h(-1)). Findings of this study are a step forward to understand exposure at and around the TIs.

Concepts: Measurement, Radioactive decay, Traffic, Debut albums, Building, Storey, Floor, Thirteenth floor

29

Paris and London are Europe’s two megacities and both experience poor air quality with systemic breaches of the NO2 limit value. Policy initiatives have been taken to address this: some European-wide (e.g. Euro emission standards); others local (e.g. Low Emission Zone, LEZ). Trends in NOX, NO2 and particulate matter (PM10, PM2.5) for 2005-2016 in background and roadside locations; and trends in traffic increments were calculated in both cities to address their impact. Trends in traffic counts and the distribution in Euro standards for diesel vehicles were also evaluated. Linear-mixed effect models were built to determine the main determinants of traffic concentrations. There was an overall increase in roadside NO2 in 2005-2009 in both cities followed by a decrease of ∼5% year-1 from 2010. Downward trends were associated with the introduction of Euro V heavy vehicles. Despite NO2 decreasing, at current rates, roads will need 20 (Paris) and 193 years (London) to achieve the European Limit Value (40 μg m-3 annual mean). Euro 5 light diesel vehicles were associated with the decrease in roadside PM10. An increase in motorcycles in London since 2010 contributed to the lack of significant trend in PM2.5 roadside increment in 2010-16.

28

The explosion of the Deepwater Horizon oil platform on April 20th, 2010 resulted in the second largest oil spill in history. The distribution and chemical composition of hydrocarbons within a 45 km radius of the blowout was investigated. All available certified hydrocarbon data were acquired from NOAA and BP. The distribution of hydrocarbons was found to be dispersed over a wider area in subsurface waters than previously predicted or reported. A deepwater hydrocarbon plume predicted by models was verified and additional plumes were identified. Because the samples were not collected systematically, there is still some question about the presence and persistence of an 865 m depth plume predicted by models. Water soluble compounds were extracted from the rising oil in deepwater, and were found at potentially toxic levels outside of areas previously reported to contain hydrocarbons. Application of subsurface dispersants was found to increase hydrocarbon concentration in subsurface waters.

Concepts: Water, Petroleum, Solubility, Hydrocarbon, Wax, Exxon Valdez oil spill, Oil spill, Oil

28

To assess the geochemical reactivity and oral bioaccessibility of Cd, Cu, Pb and Zn in urban soils from the Porto area, four extractions were performed including Aqua Regia (AR; pseudototal), 0.43 M HNO(3) (reactive), 0.01 M CaCl(2) (available), and 0.4 M glycine at pH = 1.5, SBET method (oral bioaccessible pool). Oral bioaccessibility in urban soils was higher than in samples from rural, industrial and mining areas which is most likely related to sources of metals and parent materials of corresponding soils. The availability and reactivity were described well by non-linear Freundlich-type equations when considering differences in soil properties. The resulting empirical models are able to predict availability and reactivity and can be used to improve the accuracy of risk assessment. Furthermore, a close 1:1 relationship exists between results from the 0.43 M HNO(3) method and the SBET method which substantially facilitates risk assessment procedures and reduces analytical costs.

Concepts: Scientific method, Evaluation, Risk, Soil, Assessment, Zinc, Risk assessment, Aqua regia

28

The presence of the synthetic estrogen 17α-ethinylestradiol (EE2) in the environment is of increasing concern due to the endocrine disruption of aquatic organisms. Incomplete removal from wastewater (WW) is one of the main sources of EE2 in aquatic ecosystems, thus improving processes like biological WW treatment/activated sludge (AS) is becoming significantly important. There are opposing results regarding EE2 biodegradability by AS; one discrepancy is the efficacy of heterotrophic bacteria. This research demonstrated the ability of heterotrophs commonly present in AS (B. subtilis, P. aeruginosa, P. putida, R. equi, R. erythropolis, R. rhodochrous, R. zopfii) to remove EE2. R. rhodochrous was the most successful with no detectable EE2 after 48 h; the other bacteria achieved 21%-61% EE2 removal. No additive or synergistic effects were observed due to the combination of the bacterial cultures with maximum EE2 removals of 43% after 300 h.

Concepts: DNA, Bacteria, Organism, Natural environment, Ecosystem, Bioremediation, Heterotroph, Removal

27

Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources.

Concepts: Groundwater, Anaerobic digestion, Leachate, Landfill, Land reclamation, Aspartame, Sweeteners, Sucralose

27

Concentrations of particulate emissions from a quarry located in hilly terrain were calculated by two common atmospheric dispersion models, AERMOD and CALPUFF. Evaluation of these models for emissions from quarries/open pit mines that are located in complex topography is missing from the literature. Due to severe uncertainties in the input parameters, numerous scenarios were simulated and model sensitivity was studied. Model results were compared among themselves, and to measured total suspended particulate (TSP). For a wide range of meteorological and topographical conditions studied, AERMOD predictions were in a better agreement with the measurements than those obtained by CALPUFF. The use of AERMOD’s “Open pit” tool seems unnecessary when accurate digital topographic data are available. Onsite meteorological data are shown to be crucial for reliable dispersion calculations in complex terrain.

Concepts: Particulate, Air pollution, Topography, Landform, Terrain, Atmospheric dispersion modeling

27

Embryo toxicity of particles generated by combustion processes is of special concern for human health. A significant part of these toxic effects is linked to the binding of some pollutants (like polycyclic aromatic hydrocarbons or PAHs) to the Aryl hydrocarbon Receptor (AhR) and the activation of target genes, like the cytochrome P4501A. This activity was analyzed for ambient air and coal-combustion particle extracts in zebrafish embryos (the cyp1aDarT assay) and in two single-cell bioassays: the yeast-based YCM-RYA and the DR-luc (rat cells) assay. Observed AhR ligand activity of samples generally correlated to the predicted toxic effect according to their PAH composition, except for one of the coal combustion samples with an anomalously high activity in the cyp1aDarT assay. This sample induced deformities in zebrafish embryos. We concluded that the combination of morphological and molecular assays may detect embryonic toxic effects that cannot be predicted from chemical analyses or single-cell bioassays.

Concepts: Carbon, Polycyclic aromatic hydrocarbon, Benzene, Toxicology, Hydrocarbon, Toxicity, Aromatic hydrocarbon, Aryl hydrocarbon receptor nuclear translocator