SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: eNeuro

392

The precise nature of the engram, the physical substrate of memory, remains uncertain. Here, it is reported that RNA extracted from the central nervous system of Aplysia given long-term sensitization (LTS) training induced sensitization when injected into untrained animals; furthermore, the RNA-induced sensitization, like training-induced sensitization, required DNA methylation. In cellular experiments, treatment with RNA extracted from trained animals was found to increase excitability in sensory neurons, but not in motor neurons, dissociated from naïve animals. Thus, the behavioral, and a subset of the cellular, modifications characteristic of a form of nonassociative long-term memory (LTM) in Aplysia can be transferred by RNA. These results indicate that RNA is sufficient to generate an engram for LTS in Aplysia and are consistent with the hypothesis that RNA-induced epigenetic changes underlie memory storage in Aplysia.

190

Magnetoreception, the perception of the geomagnetic field, is a sensory modality well-established across all major groups of vertebrates and some invertebrates, but its presence in humans has been tested rarely, yielding inconclusive results. We report here a strong, specific human brain response to ecologically-relevant rotations of Earth-strength magnetic fields. Following geomagnetic stimulation, a drop in amplitude of electroencephalography (EEG) alpha-oscillations (8-13 Hz) occurred in a repeatable manner. Termed alpha-event-related desynchronization (alpha-ERD), such a response has been associated previously with sensory and cognitive processing of external stimuli including vision, auditory and somatosensory cues. Alpha-ERD in response to the geomagnetic field was triggered only by horizontal rotations when the static vertical magnetic field was directed downwards, as it is in the Northern Hemisphere; no brain responses were elicited by the same horizontal rotations when the static vertical component was directed upwards. This implicates a biological response tuned to the ecology of the local human population, rather than a generic physical effect. Biophysical tests showed that the neural response was sensitive to static components of the magnetic field. This rules out all forms of electrical induction (including artifacts from the electrodes) which are determined solely on dynamic components of the field. The neural response was also sensitive to the polarity of the magnetic field. This rules out free-radical “quantum compass” mechanisms like the cryptochrome hypothesis, which can detect only axial alignment. Ferromagnetism remains a viable biophysical mechanism for sensory transduction and provides a basis to start the behavioral exploration of human magnetoreception.

145

The robustness of the visual system lies in its ability to perceive degraded images. This is achieved through interacting bottom-up, recurrent, and top-down pathways that process the visual input in concordance with stored prior information. The interaction mechanism by which they integrate visual input and prior information is still enigmatic. We present a new approach using deep neural network (DNN) representation to reveal the effects of such integration on degraded visual inputs. We transformed measured human brain activity resulting from viewing blurred images to the hierarchical representation space derived from a feedforward DNN. Transformed representations were found to veer toward the original nonblurred image and away from the blurred stimulus image. This indicated deblurring or sharpening in the neural representation, and possibly in our perception. We anticipate these results will help unravel the interplay mechanism between bottom-up, recurrent, and top-down pathways, leading to more comprehensive models of vision.

116

As NASA prepares for a mission to Mars, concerns regarding the health risks associated with deep space radiation exposure have emerged. Until now, the impacts of such exposures have only been studied in animals after acute exposures, using dose rates approximately 1.5×105 higher than those actually encountered in space. Using a new, low dose rate neutron irradiation facility, we have uncovered that realistic, low dose rate exposures produce serious neurocognitive complications associated with impaired neurotransmission. Chronic (6 month) low dose (18 cGy) and dose rate (1 mGy/day) exposures of mice to a mixed field of neutrons and photons result in diminished hippocampal neuronal excitability and disrupted hippocampal and cortical long-term potentiation. Furthermore, mice displayed severe impairments in learning and memory, and the emergence of distress behaviors. Behavioral analyses showed an alarming increase in risk associated with these realistic simulations, revealing for the first time, some unexpected potential problems associated with deep space travel on all levels of neurological function.Significance Statement Simulating the space radiation environment to date has been limited by available technology and restricted by the practicalities of implementing protracted terrestrial-based exposures. Now through the use of a new neutron irradiation facility, capable of simulating the realistic low dose rates found in deep space, we have uncovered striking neurobehavioral and electrophysiological defects in rodents subjected to continuous (6 month) low dose rate (1 mGy/day) neutron exposures. This study represents the first to document the significant adverse consequences of space relevant radiation dose rates on the brain, and points to the heightened risks associated with NASA’s upcoming plans for travel to Mars.

70

When postmortem studies related to transgender individuals were first published, little was known about the function of the various identified nuclei. Now, over two decades later, significant progress has been made associating function with specific brain regions, as well as in identifying networks associated with groups of behaviors. However, much of this progress has not been integrated into the general conceptualization of gender dysphoria in humans. We hypothesize that in individuals with gender dysphoria, the aspects of chronic distress, gender atypical behavior, and incongruence between perception of gender identity and external primary sex characteristics are all directly related to functional differences in associated brain networks. We evaluated previously published neuroscience data related to these aspects and the associated functional networks, along with other relevant information. We find that the brain networks that give individuals their ownership of body parts, that influence gender typical behavior, and that are involved in chronic distress are different in individuals with and without gender dysphoria, leading to a new theory-that gender dysphoria is a sensory perception condition, an alteration in sense of gender influenced by the reflexive behavioral responses associated with each of these networks. This theory builds upon previous work that supports the relevance of the body ownership network and that questions the relevance of cerebral sexual dimorphism in regards to gender dysphoria. However, our theory uses a hierarchical executive function model to incorporate multiple reflexive factors (body ownership, gender (a)typical behavior, and chronic distress) with the cognitive, reflective process of gender identity.Significance Our new model highlights connections between multiple dimensions of gender dysphoria and behavioral neuroscience data, explaining the experience of gender dysphoria using relevant neural substrates and networks. This biology/symptom-based approach provides an updated theory of gender dysphoria, fostering new hypotheses to advance basic understanding of the condition. This theory may lead to therapies which directly address the underlying biology rather than just the subjective symptoms. Such therapies may also be more effective at reducing comorbid conditions (e.g., depression or suicide), given the possibility of a common, underlying biological cause.

67

Uncovering the neural dynamics of facial identity processing along with its representational basis outlines a major endeavor in the study of visual processing. To this end, here, we record human electroencephalography (EEG) data associated with viewing face stimuli; then, we exploit spatiotemporal EEG information to determine the neural correlates of facial identity representations and to reconstruct the appearance of the corresponding stimuli. Our findings indicate that multiple temporal intervals support: facial identity classification, face space estimation, visual feature extraction and image reconstruction. In particular, we note that both classification and reconstruction accuracy peak in the proximity of the N170 component. Further, aggregate data from a larger interval (50-650 ms after stimulus onset) support robust reconstruction results, consistent with the availability of distinct visual information over time. Thus, theoretically, our findings shed light on the time course of face processing while, methodologically, they demonstrate the feasibility of EEG-based image reconstruction.

Concepts: Brain, Neuroscience, Visual system, Face perception, Event-related potential, Pattern recognition, Octave, Enharmonic

52

The transition from adolescence to adulthood is associated with brain remodeling in the final stages of developmental growth. It is also a period when a large proportion of this age group engages in binge alcohol drinking (occasional consumption of four to five drinks leading to intoxication) and heavy alcohol drinking (binge drinking on ≥5 d in a month). Here we report on magnetic resonance imaging of developmental changes in the brain occurring during late adolescence and early adulthood (3.5-7.5 years of age) in a rhesus macaque model of alcohol self-administration. Monkeys were imaged prior to alcohol exposure, and following ∼6 and ∼12 months of daily (22 h/d) access to ethanol and water. The results revealed that the brain volume increases by 1 ml/1.87 years throughout the late adolescence and early adulthood in controls. Heavy alcohol drinking reduced the rate of brain growth by 0.25 ml/year per 1 g/kg daily ethanol. Cortical volume increased throughout this period with no significant effect of alcohol drinking on the cortical growth rate. In subcortical regions, age-dependent increases in the volumes of globus pallidus, thalamus, brainstem, and cerebellum were observed. Heavy drinking attenuated the growth rate of the thalamus. Thus, developmental brain volume changes in the span of late adolescence to young adulthood in macaques is altered by excessive alcohol, an insult that may be linked to the continuation of heavy drinking throughout later adult life.

46

Cognitive reserve, the brain’s capacity to draw on enriching experiences during youth, is believed to protect against memory loss associated with a decline in hippocampal function, as seen in normal aging and neurodegenerative disease. Adult neurogenesis has been suggested as a specific mechanism involved in cognitive (or neurogenic) reserve. The first objective of this study was to compare learning-related neuronal activity in adult-born versus developmentally born hippocampal neurons in juvenile male rats that had engaged in extensive running activity during early development or reared in a standard laboratory environment. The second objective was to investigate the long-term effect of exercise in rats on learning and memory of a contextual fear (CF) response later in adulthood. These aims address the important question as to whether exercise in early life is sufficient to build a reserve that protects against the process of cognitive aging. The results reveal a long-term effect of early running on adult-born dentate granule neurons and a special role for adult-born neurons in contextual memory, in a manner that is consistent with the neurogenic reserve hypothesis.

Concepts: Alzheimer's disease, Psychology, Neuron, Brain, Human brain, Neurology, Hippocampus, Neurogenesis

40

Neuroscience research has historically ignored female animals. This neglect comes in two general forms. The first is sex bias, defined as favoring one sex over another; in this case, male over female. The second is sex omission, which is the lack of reporting sex. The recognition of this phenomenon has generated fierce debate across the sciences. Here we test whether sex bias and omission are still present in the neuroscience literature, whether studies employing both males and females neglect sex as an experimental variable, and whether sex bias and omission differs between animal models and journals. To accomplish this, we analyzed the largest-ever number of neuroscience articles for sex bias and omission: 6636 articles using mice or rats in 6 journals published from 2010 to 2014. Sex omission is declining, as increasing numbers of articles report sex. Sex bias remains present, as increasing numbers of articles report the sole use of males. Articles using both males and females are also increasing, but few report assessing sex as an experimental variable. Sex bias and omission varies substantially by animal model and journal. These findings are essential for understanding the complex status of sex bias and omission in neuroscience research and may inform effective decisions regarding policy action.

Concepts: Male, Reproduction, Female, Gender, Sex, Gamete, Hermaphrodite, Isogamy

39

Ethanol has robust effects on presynaptic activity in many neurons, however, it is not yet clear how this drug acts within this compartment to change neural activity, nor the significance of this change on behavior and physiology in vivo. One possible presynaptic effector for ethanol is the Munc13-1 protein. Herein, we show that ethanol binding to the rat Munc13-1 C1 domain, at concentrations consistent with binge exposure, reduces diacylglycerol (DAG) binding. The inhibition of DAG binding is predicted to reduce the activity of Munc13-1 and presynaptic release. In Drosophila, we show that sedating concentrations of ethanol significantly reduce synaptic vesicle release in olfactory sensory neurons (OSNs), while having no significant impact on membrane depolarization and Ca2+ influx into the presynaptic compartment. These data indicate that ethanol targets the active zone in reducing synaptic vesicle exocytosis. Drosophila, haploinsufficent for the Munc13-1 ortholog Dunc13, are more resistant to the effect of ethanol on presynaptic inhibition. Genetically reducing the activity of Dunc13 through mutation or expression of RNAi transgenes also leads to a significant resistance to the sedative effects of ethanol. The neuronal expression of Munc13-1 in heterozygotes for a Dunc13 loss-of-function mutation can largely rescue the ethanol sedation resistance phenotype, indicating a conservation of function between Munc13-1 and Dunc13 in ethanol sedation. Hence, reducing Dunc13 activity leads to naïve physiological and behavioral resistance to sedating concentrations of ethanol. We propose that reducing Dunc13 activity, genetically or pharmacologically by ethanol binding to the C1 domain of Munc13-1/Dunc13, promotes a homeostatic response that leads to ethanol tolerance.