SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Drug metabolism and pharmacokinetics

26

 A pharmacokinetic/pharmacodynamic (PK/PD) analysis is important in antibiotic chemotherapy. Basically, the in vivo efficacy of antibiotics that exert concentration-dependent effects can be predicted using conventional PK/PD indices such as the ratio of the area under the curve to the minimum inhibitory concentration (AUC/MIC) and/or the ratio of the maximum plasma concentration to MIC (Cmax/MIC), whereas that of antibiotics with time-dependent effects can be determined using the period of time for which the drug concentration exceeds the MIC (time above MIC [TAM]). However, an optimal PK/PD index remains to be established for some antibiotics. Thus, a PK/PD model, which describes the PK profile and effect of an antibiotic, was developed, and the results obtained from this model were interpreted to form a PK/PD index map to assess the optimal PK/PD index for the antibiotic. The findings from the map were generally consistent with clinical outcomes even for the antibiotics which became the exception by the conventional classification. For example, AUC/MIC was an optimal index for azithromycin despite its time-dependent bactericidal activity, and Cmax/MIC was a poor index for arbekacin despite its concentration-dependent profile. Thus, the map would be useful for selecting the appropriate PK/PD index for an antibiotic.

Concepts: Time, Effectiveness, Ratio, Antibiotic, Unified Modeling Language, Erythromycin, Bactericide, Ruby

25

This study aimed to evaluate the potential of α-cedrene as a new anti-obesity drug by characterizing absorption, metabolism and pharmacokinetics in rats. α-Cedrene was administered intravenously (10 and 20 mg/kg) and orally (50 and 100 mg/kg) to female and male Sprague-Dawley rats. Blood, tissues, urine, and feces were collected at predetermined times. α-Cedrene concentrations were determined by a validated gas chromatography-tandem mass spectrometry (GC-MS/MS). A gas chromatography-mass selective detection (GC-MSD) method was used to identify the major metabolite. After i.v. injection, α-cedrene exhibited a rapid clearance (98.4-120.3 ml/min/kg), a large distribution volume (35.9-56.5 l/kg), and a relatively long half-life (4.0-6.4 h). Upon oral administration, it was slowly absorbed (Tmax = 4.4 h) with bioavailability of 48.7-84.8%. No gender differences were found in its pharmacokinetics. Upon oral administration, α-cedrene was highly distributed to tissues, with the tissue-to-plasma partition coefficients (Kp) far greater than unity for all tissues. In particular, its distribution to lipid was notably high (Kp = 132.0) compared to other tissues. A mono-hydroxylated metabolite was identified as a preliminary metabolite in rat plasma. These results suggest that α-cedrene has the favorable pharmacokinetic characteristics to be further tested as an anti-obesity drug in clinical studies.

Concepts: Pharmacology, Male, Metabolism, Gender, Distribution, Absorption, Pharmacokinetics, Bioavailability

0

Studies on the efficacy evaluation of UDP-glucuronosyltransferases (UGTs) substrates often ignore the existence of active metabolites. However, the present study aims to establish an in-vitro Phase II metabolism system to predict their pharmacological effects after metabolism. Rat liver microsomes (RLMs) encapsulated in a F127'-Acr-Bis (FAB) hydrogel were placed in the incubation system. Baicalein (BA) was chosen as a model drug and the metabolic activity was investigated by quantitating the metabolite Baicalin (BG). The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to measure the cell viability in Traditional cell culture system (TCCS) and Microsome-hydrogel added to cell culture system for Phase II metabolism (MHCCS-II). Finally, MHCCS-II was applied to predict the metabolic effects of Oroxylin A (OA) and Wogonin (W). Compared to TCCS group, for HepG2 and MCF-7 cells, BA in MHCCS-II led to lower survival ratios of cells (P < 0.05), while for PC12 cells it led to higher survival ratios of cells (P < 0.01). For HepG2 cells, OA and W showed obviously enhanced tumor inhibition after metabolism with the IC50 of 32.7 ± 2.9 μM and 76.1 ± 5.1 μM, respectively (P < 0.01). In conclusion, the MHCCS-II could be a useful tool for studying the pharmacokinetics and pharmacodynamics of UGTs substrates.

0

Genetic polymorphisms contribute to inter-individual variability in the metabolism of multiple clinical drugs, including warfarin, thiopurines, primaquine, and aminoglycosides. A rapid and sensitive clinical assessment of various genome biomarkers is, therefore, required to predict the individual responsiveness of each patient to these drugs. In this study, we developed a novel genotyping method for the detection of nine pharmacogene variants that are important in the prediction of drug efficiency and toxicity. This genotyping method uses competitive allele-specific PCR and a single-stranded tag hybridization chromatographic printed-array strip (STH-PAS) that can unambiguously determine the presence or absence of the gene variant by displaying visible blue lines on the chromatographic printed-array strip. Notably, the results of our STH-PAS method were in 100% agreement with those obtained using standard Sanger sequencing and KASP assay genotyping methods for CYP4F2 gene deletion. Moreover, the results were obtained within 90 min, including the PCR amplification and signal detection processes. The sensitive and rapid nature of this novel method make it ideal for clinical genetic testing to predict drug efficacy and toxicity, and in doing so will aid in the development of individualized medicine and better patient care.

0

Medication therapy is the first line of treatment in the management of epilepsy. Fetal exposure to valproic acid (VPA), an antiepileptic drug, poses an elevated risk of teratogenicity in early pregnancy. Some studies have reported that monocarboxylate transporters (MCTs) may be involved in the placental transport of VPA. However, it has not been determined which MCTs contribute to VPA transport into the placenta. Therefore, the aim of this study was to determine how MCTs contribute to VPA transport into the placenta using the human placenta choriocarcinoma cell line JEG-3. VPA uptake was investigated using JEG-3 cells and radiolabeled VPA. MCT expression in JEG-3 cells was detected using RT-PCR and western blotting. Knockdown of MCTs was carried out using siRNAs. VPA uptake into JEG-3 cells was pH- and concentration-dependent, and described by using the Michaelis-Menten equation (Km = 0.95 ± 0.17 mM; Vmax = 19.3 ± 1.21 nmol/mg protein/15 s). MCT1 and MCT4 expression was found in JEG-3 cells, and typical MCT inhibitors significantly inhibited VPA uptake into JEG-3 cells. However, knockdown of MCT1 and MCT4 did not alter VPA uptake. In conclusion, VPA transport is mediated by a proton-dependent transporter in JEG-3 cells, but not by MCT1 and MCT4.

0

The objective of the present study was to develop a population pharmacodynamic (PPD) model to describe the glycated hemoglobin (HbA1c)-lowering effects of metformin in type 2 diabetes mellitus patients with and without secondary failure and to characterize changes in HbA1c levels in the two subpopulations using a mixture model. Information on patients was collected retrospectively from electronic medical records. In this study, the mixture model was used to characterize the bimodal effects of metformin. A PPD analysis was performed using NONMEM 7.3.0. A physiological indirect response model, based on 829 HbA1c levels of 69 patients, described the time course for the HbA1c-lowering effects of metformin. Evidence for the different effectiveness of metformin subpopulations was provided using the mixture model. In the final PPD model, the inhibition effect was constant over a study duration in a patient subpopulation without secondary failure. In contrast, the inhibition effect decreased as a function of time after start of metformin treatment in a subpopulation with secondary failure. These results indicated that HbA1c improvements appeared to deteriorate over time in patients with secondary failure. In a PPD analysis of metformin, it was possible to assign patients with secondary failure using the mixture model.

0

In this study, we aimed to understand the gap in coverage of pharmacogenomic (PGx) biomarkers between Japan and the US. PGx biomarkers (1) in the Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines; (2) that are CPIC level A or B; or (3) have US Food and Drug Administration (FDA)-approved drug labels, were determined. Subsequently, their coverage by US health insurance companies and the National Health Insurance (NHI) in Japan was investigated. We identified the top six health insurance companies with the largest market shares in the US and investigated the coverage for the PGx biomarkers by these health insurers, Medicare, Medicaid, and the NHI in Japan. We found that 19.9% of these biomarkers are covered by the six companies (10.0%, the CPIC guidelines; 25.1%, the FDA-approved drug labels). The coverage of somatic and germline biomarkers was respectively 86.8% and 8.5% in the US and 56.3% and 0.6% in Japan. A few germline PGx biomarkers are covered both in Japan and the US, but the coverage of both somatic and germline biomarkers was lower in Japan. Therefore, more coverage should be considered to improve patient outcomes after prescribing medications in Japan.

0

Cytochrome P450 2D6 (CYP2D6) is responsible for the metabolic activation of primaquine, an antimalarial drug. CYP2D6 is genetically polymorphic, and these polymorphisms are associated with interindividual variations observed in the therapeutic efficacy of primaquine. To further understand this association, we performed in vitro enzymatic analyses of the wild-type CYP2D6.1 and 49 CYP2D6 allelic variants, which were expressed in 293FT cells, using primaquine as a substrate. The concentrations of CYP2D6 variant holoenzymes were measured by using carbon monoxide (CO)-reduced difference spectroscopy, and the wild type and 27 variants showed a peak at 450 nm. The kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of primaquine 5-hydroxylation were characterized. The kinetic parameters of the wild type and 16 variants were measured, but the values for the remaining 33 variants could not be determined because of low metabolite concentrations. Among the variants, six (i.e., CYP2D6.17, .18, .35, .39, .53, and .70) showed significantly reduced intrinsic clearance compared with that of CYP2D6.1. Three-dimensional structural modeling analysis was performed to elucidate the mechanism of changes in the kinetics of CYP2D6 variants. Our findings provide insights into the allele-specific activity of CYP2D6 for primaquine, which could be clinically useful for malaria treatment and eradication efforts.

0

MCT1 (SLC16A1), MCT4 (SLC16A3), and MCT11 (SLC16A11) are members of the monocarboxylate transporter (MCT) family. MCT1 and MCT4 transport pH-related monocarboxylates, such as lactate and pyruvate. MCT11 may also be a proton-coupled monocarboxylate transporter. Although alterations of these substrates are involved in the pathology of cancer and diabetes, little is known about MCT polymorphisms. In this study, genetic variation was evaluated in SLC16A1, SLC16A3, and SLC16A11 in the Japanese population (healthy volunteers, n = 92). Polymorphisms in the coding regions of the SLC16A1, SLC16A3, and SLC16A11 genes were screened by DNA sequencing. A single polymorphism that caused a change in the amino acid sequence was found in SLC16A1 (rs1049434 (T1470A, D490E)) and in SLC16A3 (rs368788465 (C641T, S214F)). Five polymorphisms were detected in the SLC16A11 gene (rs117767867 (G337A, V113I), rs13342692 (A380G, D127G), rs13342232 (T561C, silent), rs75418188 (G1018A, G340S), and rs75493593 (C1327A, P443T)). This information for a healthy population provides a comparison for further studies of patients with various diseases such as cancer and diabetes.

0

HLA-B*58:01 has been demonstrated to be associated with allopurinol-induced severe cutaneous adverse reactions. Since HLA-B*58:01 is too complicated to be identified, it is necessary to select an appropriate surrogate biomarker. In Japan, the rs9263726 allele was considered as a surrogate biomarker for HLA-B*58:01, but this was not the case with the Australian cohort. Due to the conflict results, in this study, we aim to demonstrate whether the rs9263726 allele is a surrogate biomarker for HLA-B*58:01 in Han Chinese population. A total of 353 samples (200 cases from the south and 153 cases from the north) were selected to detect HLA-B*58:01 and rs9263726 allele. The HLA-B*58:01 was identified by sequencing-based method, and the rs9263726 allele was identified by Taqman SNP Genotyping Assays. The results showed that the two alleles had a linkage, but not absolute linkage disequilibrium in Han Chinese population.