Discover the most talked about and latest scientific content & concepts.

Journal: DNA repair


Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell.

Concepts: DNA, Protein, Gene, Genetics, Cell nucleus, Bacteria, Organism, DNA replication


DNA helicases are molecular motors that harness the energy of nucleoside triphosphate hydrolysis to unwinding structured DNA molecules that must be resolved during cellular replication, DNA repair, recombination, and transcription. In vivo, DNA helicases are expected to encounter a wide spectrum of covalent DNA modifications to the sugar phosphate backbone or the nitrogenous bases; these modifications can be induced by endogenous biochemical processes or exposure to environmental agents. The frequency of lesion abundance can vary depending on the lesion type. Certain adducts such as oxidative base modifications can be quite numerous, and their effects can be helix-distorting or subtle perturbations to DNA structure. Helicase encounters with specific DNA lesions and more novel forms of DNA damage will be discussed. We will also review the battery of assays that have been used to characterize helicase-catalyzed unwinding of damaged DNA substrates. Characterization of the effects of specific DNA adducts on unwinding by various DNA repair and replication helicases has proven to be insightful for understanding mechanistic and biological aspects of helicase function in cellular DNA metabolism.

Concepts: DNA, Protein, Metabolism, Adenosine triphosphate, DNA repair, DNA replication, Molecular motor, Helicase


Acylpeptide hydrolase (APEH) deacetylates N-alpha-acetylated peptides and selectively degrades oxidised proteins, but the biochemical pathways that are regulated by this protease are unknown. Here, we identify APEH as a component of the cellular response to DNA damage. Although APEH is primarily localised in the cytoplasm, we show that a sub-fraction of this enzyme is sequestered at sites of nuclear damage following UVA irradiation or following oxidative stress. We show that localization of APEH at sites of nuclear damage is mediated by direct interaction with XRCC1, a scaffold protein that accelerates the repair of DNA single-strand breaks. We show that APEH interacts with the amino-terminal domain of XRCC1, and that APEH facilitates both single-strand break repair and cell survival following exposure to H2O2 in human cells. These data identify APEH as a novel proteolytic component of the DNA damage response.

Concepts: DNA, Protein, Gene, Cell nucleus, Cell, Metabolism, Adenosine triphosphate, Enzyme


Maintenance of a genome requires DNA repair integrated with chromatin remodeling. We have analyzed six transcriptome data sets and one data set on translational regulation of known DNA repair and remodeling genes in synchronized human cells. These data are available through our new database: Genes that have similar transcription profiles in at least two of our data sets generally agree well with known protein profiles. In brief, long patch base excision repair (BER) is enriched for S phase genes, whereas short patch BER uses genes essentially equally expressed in all cell cycle phases. Furthermore, most genes related to DNA mismatch repair, Fanconi anemia and homologous recombination have their highest expression in the S phase. In contrast, genes specific for direct repair, nucleotide excision repair, as well as non-homologous end joining do not show cell cycle-related expression. Cell cycle regulated chromatin remodeling genes were most frequently confined to G1/S and S. These include e.g. genes for chromatin assembly factor 1 (CAF-1) major subunits CHAF1A and CHAF1B; the putative helicases HELLS and ATAD2 that both co-activate E2F transcription factors central in G1/S-transition and recruit DNA repair and chromatin-modifying proteins and DNA double strand break repair proteins; and RAD54L and RAD54B involved in double strand break repair. TOP2A was consistently most highly expressed in G2, but also expressed in late S phase, supporting a role in regulating entry into mitosis. Translational regulation complements transcriptional regulation and appears to be a relatively common cell cycle regulatory mechanism for DNA repair genes. Our results identify cell cycle phases in which different pathways have highest activity, and demonstrate that periodically expressed genes in a pathway are frequently co-expressed. Furthermore, the data suggest that S phase expression and over-expression of some multifunctional chromatin remodeling proteins may set up feedback loops driving cancer cell proliferation.

Concepts: DNA, Protein, Gene, Genetics, Cell nucleus, Gene expression, DNA repair, Cell cycle


DNA nuclease/helicase 2 (DNA2), a multi-functional protein protecting the high fidelity of genomic transmission, plays critical roles in DNA replication and repair processes. In the maturation of Okazaki fragments, DNA2 acts synergistically with other enzymes to cleave the DNA-RNA primer flaps via different pathways. DNA2 is also involved in the stability of mitochondrial DNA and the maintenance of telomeres. Moreover, DNA2 potentially participates in controlling the cell cycle by repairing the DNA replication faults at main checkpoints. In addition, previous evidences demonstrated that DNA2 also functions in the repair process of DNA damages, such as base excision repair (BER). Currently, large studies revealed the structures and functions of DNA2 in prokaryotes and unicellular eukaryotes, such as bacteria and yeast. However, the studies that highlighted the functions of human DNA2 (hDNA2) and the relationships with other multifunctional proteins are still elusive, and more precise investigations are immensely needed. Therefore, this review mainly encompasses the key functions of DNA2 in human cells with various aspects, especially focusing on the genome integrity, and also generalizes the recent insights to the mechanisms related to the occurrence of cancer and other diseases potentially linked to the mutations in DNA2.

Concepts: DNA, Protein, Cell nucleus, Cell, Bacteria, Eukaryote, DNA repair, DNA replication


If unrepaired, damage to genomic DNA can cause mutations and/or be cytotoxic. Single base lesions are repaired via the base excision repair (BER) pathway. The first step in BER is the recognition and removal of the nucleobase lesion by a glycosylase enzyme. For example, human oxoguanine glycosylase 1 (hOGG1) is responsible for removal of the prototypic oxidatively damaged nucleobase, 8-oxo-7,8-dihydroguanine (8-oxoG). To date, most studies of glycosylases have used free duplex DNA substrates. However, cellular DNA is packaged as repeating nucleosome units, with 145 base pair segments of DNA wrapped around histone protein octamers. Previous studies revealed inhibition of hOGG1 at the nucleosome dyad axis and in the absence of chromatin remodelers. In this study, we reveal that even in the absence of chromatin remodelers or external cofactors, hOGG1 can initiate BER at positions off the dyad axis and that this activity is facilitated by spontaneous and transient unwrapping of DNA from the histones. Additionally, we find that solution accessibility as determined by hydroxyl radical footprinting is not fully predictive of glycosylase activity and that histone tails can suppress hOGG1 activity. We therefore suggest that local nuances in the nucleosome environment and histone-DNA interactions can impact glycosylase activity.

Concepts: DNA, Gene, Genetics, Histone, DNA repair, Nucleosome, Chromatin, Oxoguanine glycosylase


Although chromosome aberrations are known to derive from distance-dependent mis-rejoining of chromosome fragments, evaluating whether a certain model describes such “proximity effects” better than another one is complicated by the fact that different approaches have often been tested under different conditions. Herein, a biophysical model (“BIANCA”, i.e. BIophysical ANalysis of Cell death and chromosome Aberrations) was upgraded, implementing explicit chromosome-arm domains and two new models for the dependence of the rejoining probability on the fragment initial distance, r. Such probability was described either by an exponential function like exp(-r/r0), or by a Gaussian function like exp(-r(2)/2σ(2)), where r0 and σ were adjustable parameters. The second, and last, parameters was the yield of “Cluster Lesions” (CL), where “Cluster Lesion” defines a critical DNA damage producing two independent chromosome fragments. The model was applied to low-LET-irradiated lymphocytes (doses: 1-4Gy) and fibroblasts (1-6.1Gy). Good agreement with experimental yields of dicentrics and centric rings, and thus their ratio (“F-ratio”), was found by both the exponential model (with r0=0.8μm for lymphocytes and 0.7μm for fibroblasts) and the Gaussian model (with σ=1.1μm for lymphocytes and 1.3μm for fibroblasts). While the former also allowed reproducing dose-responses for excess acentric fragments, the latter substantially underestimated the experimental curves. Both models provided G-ratios (ratio of acentric to centric rings) higher than those expected from randomness, although the values calculated by the Gaussian model were lower than those calculated by the exponential one. For lymphocytes the calculated G-ratios were in good agreement with the experimental ones, whereas for fibroblasts both models substantially underestimated the experimental results, which deserves further investigation. This work suggested that, although both models performed better than a step model (which previously allowed reproducing the F-ratio but underestimated the G-ratio), an exponential function describes proximity effects better than a Gaussian one.

Concepts: Cytogenetics, Chromosomes, Real number, Normal distribution, Aneuploidy, Exponential growth, Exponentials, Proportionality


Non-homologous end joining (NHEJ) is the major pathway for the repair of ionizing radiation induced DNA double strand breaks (DSBs) in human cells. Critical to NHEJ is the DNA-dependent interaction of the Ku70/80 heterodimer with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form the DNA-PK holoenzyme. However, precisely how Ku recruits DNA-PKcs to DSBs ends to enhance its kinase activity has remained enigmatic, with contradictory findings reported in the literature. Here we address the role of the Ku80 C-terminal region (CTR) in the DNA-dependent interaction of Ku70/80 with DNA-PKcs using purified components and defined DNA structures. Our results show that the Ku80 CTR is required for interaction with DNA-PKcs on short segments of blunt ended 25bp dsDNA or 25bp dsDNA with a 15-base poly dA single stranded (ss) DNA extension, but this requirement is less stringent on longer dsDNA molecules (35bp blunt ended dsDNA) or 25bp duplex DNA with either a 15-base poly dT or poly dC ssDNA extension. Moreover, the DNA-PKcs-Ku complex preferentially forms on 25 bp DNA with a poly-pyrimidine ssDNA extension.Our work clarifies the role of the Ku80 CTR and dsDNA ends on the interaction of DNA-PKcs with Ku and provides key information to guide assembly and biology of NHEJ complexes.

Concepts: DNA, Protein, Gene, Transcription, DNA repair, Telomere, Non-homologous end joining, DNA-PKcs


O(6)-Methylguanine (O(6)-MeG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, generally leads to G:C to A:T mutagenesis. To study DNA replication encountering O(6)-MeG by the DNA polymerase (gp90) of P. aeruginosa phage PaP1, we analyzed steady-state and pre-steady-state kinetics of nucleotide incorporation opposite O(6)-MeG by gp90 exo(-). O(6)-MeG partially inhibited full-length extension by gp90 exo(-). O(6)-MeG greatly reduces dNTP incorporation efficiency, resulting in 67-fold preferential error-prone incorporation of dTTP than dCTP. Gp90 exo(-) extends beyond T:O(6)-MeG 2-fold more efficiently than C:O(6)-MeG. Incorporation of dCTP opposite G and incorporation of dCTP or dTTP opposite O(6)-MeG show fast burst phases. The pre-steady-state incorporation efficiency (kpol/Kd,dNTP) is decreased in the order of dCTP:G>dTTP:O(6)-MeG>dCTP:O(6)-MeG. The presence of O(6)-MeG at template does not affect the binding affinity of polymerase to DNA but it weakened their binding in the presence of dCTP and Mg(2+). Misincorporation of dTTP opposite O(6)-MeG further weakens the binding affinity of polymerase to DNA. The priority of dTTP incorporation opposite O(6)-MeG is originated from the fact that dTTP can induce a faster conformational change step and a faster chemical step than dCTP. This study reveals that gp90 bypasses O(6)-MeG in an error-prone manner and provides further understanding in DNA replication encountering mutagenic alkylation DNA damage for P. aeruginosa phage PaP1.

Concepts: DNA, Mutation, Bacteria, Pseudomonas aeruginosa, Phage therapy, DNA replication, Pseudomonas, DNA polymerase


The presence of an enhancer element, RD(INK4/ARF) (RD), in the prominent INK4-ARF locus provides a novel en bloc mechanism to simultaneously regulate the transcription of the p15(INK4B) (p15), p16(INK4A) (p16), and p14(ARF) tumor suppressor genes. While genetic inactivation of p15, p16, and p14(ARF) in human cancers has been extensively studied, little is known about RD alteration and its potential contributions to cancer progression. In this review, we discuss recent developments in RD alteration and its association with p15, p16, and p14(ARF) alterations in human cancers, and demonstrate that RD deletion may represent a novel mechanism to simultaneously down-regulate p15, p16, and p14(ARF), thus promoting carcinogenesis.

Concepts: DNA, Gene, Genetics, Gene expression, Cancer, Oncology, P53, Tumor suppressor gene