SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Developmental neurobiology

28

During neural tube formation, neural plate cells migrate from the lateral aspects of the dorsal surface towards the midline. Elevation of the lateral regions of the neural plate produces the neural folds which then migrate to the midline where they fuse at their dorsal tips, generating a closed neural tube comprising an apicobasally polarized neuroepithelium. Our previous study identified a novel role for the axon guidance receptor neogenin in Xenopus neural tube formation. We demonstrated that loss of neogenin impeded neural fold apposition and neural tube closure. This study also revealed that neogenin, via its interaction with its ligand, RGMa, promoted cell-cell adhesion between neural plate cells as the neural folds elevated and between neuroepithelial cells within the neural tube. The second neogenin ligand, netrin-1, has been implicated in cell migration and epithelial morphogenesis. Therefore, we hypothesized that netrin-1 may also act as a ligand for neogenin during neurulation. Here we demonstrate that morpholino knockdown of Xenopus netrin-1 results in delayed neural fold apposition and neural tube closure. We further show that netrin-1 functions in the same pathway as neogenin and RGMa during neurulation. However, contrary to the role of neogenin-RGMa interactions, neogenin-netrin-1 interactions are not required for neural fold elevation or adhesion between neuroepithelial cells. Instead, our data suggest that netrin-1 contributes to the migration of the neural folds towards the midline. We conclude that both neogenin ligands work synergistically to ensure neural tube closure. © 2012 Wiley Periodicals, Inc., 2013.

Concepts: Axon, Embryology, Neural tube, Neurulation, Developmental neuroscience, Neural plate, Neural folds, Neural groove

2

Neurogenesis is the process of neuron generation, which occurs not only during embryonic development but also in restricted niches postnatally. One such region is called the subventricular zone (SVZ), which gives rise to new neurons in the olfactory bulb (OB). Neurons that are born postnatally migrate through more complex territories and integrate into fully functional circuits. Therefore, differences in the differentiation of embryonic and postnatally born neurons may exist. Dendritogenesis is an important process for the proper formation of future neuronal circuits. Dendritogenesis in embryonic neurons cultured in vitro was shown to depend on the mammalian target of rapamycin (mTOR). Still unknown, however, is whether mTOR could regulate the dendritic arbor morphology of SVZ-derived postnatal OB neurons under physiological conditions in vivo. The present study used in vitro cultured and differentiated SVZ-derived neural progenitors and found that both mTOR complex 1 and mTOR complex 2 are required for the dendritogenesis of SVZ-derived neurons. Furthermore, using a combination of in vivo electroporation of neural stem cells in the SVZ and genetic and pharmacological inhibition of mTOR, we found that mTOR is crucial for the growth of basal and apical dendrites in postnatally born OB neurons under physiological conditions and contributes to the stabilization of their basal dendrites. This article is protected by copyright. All rights reserved.

Concepts: Neuron, Brain, Stem cell, Axon, Neurogenesis, Synapse, Dendrite, Purkinje cell

1

Cranial nerves innervate head muscles in a well-characterised and highly conserved pattern. Identification of genes responsible for human congenital disorders of these nerves, combined with the analysis of their role in axonal development in animal models has advanced understanding of how neuromuscular connectivity is established. Here we focus on the ocular motor system, as an instructive example of the success of this approach in unravelling the aetiology of human strabismus. The discovery that ocular motility disorders can arise from mutations in transcription factors, including HoxA1, HoxB1, MafB, Phox2A and Sall4, has revealed gene regulatory networks that pattern the brainstem and/or govern the differentiation of cranial motor neurons. Mutations in genes involved in axon growth and guidance disrupt specific stages of the extension and pathfinding of ocular motor nerves, and been implicated in human strabismus. These genes encompass varied classes of molecule, from receptor complexes to dynamic effectors to cytoskeletal components, including Robo3/Rig1, Alpha2-chimaerin, Kif21A, TUBB2 and TUBB3. A current challenge is understanding the protein regulatory networks that link the cell surface to the cytoskeleton and dissecting the co-ordinated signalling cascades and motile responses that underpin axonal navigation. We review recent insights derived from basic and clinical science approaches, to show how, by capitalising on the strengths of each, a more complete picture of the aetiology of human congenital cranial dysinnervation disorders can be achieved. This elucidation of these principles illustrates the success of clinical genetic studies working in tandem with molecular and cellular models to enhance understanding of human disease. This article is protected by copyright. All rights reserved.

Concepts: Nervous system, DNA, Protein, Genetics, Action potential, Axon, Nerve, Neuromuscular junction

1

Dendrites and spines are the main neuronal structures receiving input from other neurons and glial cells. Dendritic and spine number, size and morphology are some of the crucial factors determining how signals coming from individual synapses are integrated. Much remains to be understood about the characteristics of neuronal dendrites and dendritic spines in autism and related disorders. Though there have been many studies conducted using autism mouse models, few have been carried out using postmortem human tissue from patients. Available animal models of autism include those generated through genetic modifications and those non-genetic models of the disease. Here, we review how dendrite and spine morphology and number is affected in autism and related neurodevelopmental diseases, both in human, and genetic and non-genetic animal models of autism. Overall, data obtained from human and animal models point to a generalized reduction in the size and number, as well as an alteration of the morphology of dendrites; and an increase in spine densities with immature morphology, indicating a general spine immaturity state in autism. Additional human studies on dendrite and spine number and morphology in postmortem tissue are needed to understand the properties of these structures in the cerebral cortex of patients with autism. This article is protected by copyright. All rights reserved.

Concepts: Neuron, Autism, Axon, Synapse, Dendrite, Neurons, Purkinje cell, Dendritic spine

1

Electrical coupling in circuits can produce non-intuitive circuit dynamics, as seen in both experimental work from the crustacean stomatogastric ganglion and in computational models inspired by the connectivity in this preparation. Ambiguities in interpreting the results of electrophysiological recordings can arise if sets of pre- or postsynaptic neurons are electrically coupled, or if the electrical coupling exhibits some specificity (e.g. rectifying, or voltage-dependent). Even in small circuits, electrical coupling can produce parallel pathways that can allow information to travel by monosynaptic and/or polysynaptic pathways. Consequently, similar changes in circuit dynamics can arise from entirely different underlying mechanisms. When neurons are coupled both chemically and electrically, modifying the relative strengths of the two interactions provides a mechanism for flexibility in circuit outputs. This, together with neuromodulation of gap junctions and coupled neurons is important both in developing and adult circuits. This article is protected by copyright. All rights reserved.

Concepts: Nervous system, Neuron, Electromagnetism, Electricity, Action potential, All rights reserved, Electrical synapse, Copyright

1

Oxytocin (OXT) signaling through the OXT receptor plays a significant role in a variety of physiological processes throughout the lifespan. OXT’s effects depend on the tissue distribution of the receptor. This tissue specificity is dynamic and changes across development, and also varies with sex, experience, and species. The purpose of this review is to highlight these themes with examples from several life stages and several species. Important knowledge gaps will also be emphasized. Understanding the effective sites of action for OXT via its receptor will help refine hypotheses about the roles of this important neuropeptide in the experience-dependent development and expression of species-typical social behavior. © 2016 Wiley Periodicals, Inc. Develop Neurobiol, 2016.

Concepts: Psychology, Brain, Evolution, Biology, Cellular differentiation, Sociology, Knowledge, Dynamics

0

During mammalian visual system development, retinal ganglion cells (RGCs) undergo extensive apoptotic death. In mouse retina, approximately 50% of RGCs present at birth (postnatal day 0; P0) die by P5, at a time when axons innervate central targets such as the superior colliculus (SC). We examined whether RGCs that make short-range axonal targeting errors within the contralateral SC are more likely to be eliminated during the peak period of RGC death (P1-P5), compared with RGCs initially making more accurate retinotopic connections. A small volume (2.3nl) of the retrograde nucleophilic dye Hoechst 33342 was injected into the superficial left SC of anaesthetised neonatal C57Bl/6J mice at P1 (n=5) or P4 (n=8), and the contralateral retina wholemounted 12 hours later. Retrogradely labelled healthy and dying (pyknotic) RGCs were identified by morphological criteria and counted. The percentage of pyknotic RGCs was analysed in relation to distance from the area of highest density RGC labelling, presumed to represent the most topographically accurate population. As expected, pyknotic RGC density at P1 was significantly greater than P4 (p<0.05). At P4, the density of healthy RGCs 500-750µm away from the central region was significantly less, although this was not reflected in altered pyknotic rates. However, at P1 there was a trend (p=0.08) for an increased proportion of pyknotic RGCs, specifically in temporal parts of the retina outside the densely labelled centre. Overall, the lack of consistent association between short-range targeting errors and cell death suggests that most postnatal RGC loss is not directly related to topographic accuracy. This article is protected by copyright. All rights reserved.

Concepts: Nervous system, Ganglion, Retina, Photoreceptor cell, Visual system, Retinal ganglion cell, Amacrine cell, Ganglion cell

0

Accurate quantification of gene expression is fundamental for understanding the molecular, genetic and functional bases of tissue development and diseases. Quantitative real-time PCR (qPCR) is now the most widely used method of quantifying gene expression due to its simplicity, specificity, sensitivity and wide quantification range. The use of appropriate reference genes to ensure accurate normalization is crucial for the correct quantification of gene expression from the early development, maturation, aging to injury processes in the central nervous system (CNS). In this study, we have determined the expression profiles of 12 candidate housekeeping genes (ACTB, CYC1, HMBS, GAPDH, HPRT1, RPL13A, YWHAZ, PPIA, RPLP0, TFRC, GUS and 18S rRNA) in developing mouse brain and spinal cord. Throughout development, there was a significant degree of fluctuations in their expression levels, indicating the importance and complexity of finding appropriate reference genes. Three software including BestKeeper, geNorm and NormFinder were used to evaluate the stability of potential reference genes. GUS was the most stable gene and GUS/YWHAZ were the most stable reference gene pair across different developmental stages in different CNS regions, whereas HPRT1 and GAPDH were the most variable genes and thus inappropriate to use as reference genes. Therefore, our results identified GUS and YWHAZ as the best combination of two reference genes for expression data normalization in CNS developmental studies. This article is protected by copyright. All rights reserved.

Concepts: Central nervous system, Nervous system, DNA, Gene, Genetics, Gene expression, Polymerase chain reaction, Molecular biology

0

The endoplasmic reticulum (ER) is highly conserved in eukaryotes and neurons. Indeed, the localization of the organelle in axons has been known for nearly half a century. However, the relevance the axonal ER is only beginning to emerge. In this review we discuss the structure of the ER in axons, examining the role of ER-shaping proteins and highlighting reticulons. We analyze the multiple functions of the ER and their potential contribution to axonal physiology. First we examine the emerging roles of the axonal ER in lipid synthesis, protein translation, processing, quality control and secretory trafficking of transmembrane proteins. We also review the impact of the ER on calcium dynamics, focusing on intracellular mechanisms and functions. We describe the interactions between the ER and endosomes, mitochondria and synaptic vesicles. Finally, we analyze available proteomic data of axonal preparations to reveal the dynamic functionality of the ER in axons during development. We suggest that the dynamic proteome and a validated axonal interactome, together with state-of-the-art methodologies, may provide interesting research avenues in axon physiology that may extend to pathology and regeneration. This article is protected by copyright. All rights reserved.

Concepts: Protein, Neuron, Cell, Endoplasmic reticulum, Axon

0

Alzheimer’s disease (AD) is characterized by the accumulation of insoluble deposits of Amyloid β (Aβ) in brains. Aβ is derived by sequential cleavage of the amyloid precursor protein (APP) by β-site secretase enzyme (BACE-1) and γ-secretase. Proteolytic processing of APP by BACE-1 is the rate-limiting step in Aβ production, and this pathway is a prime target for AD drug development. Both APP and BACE-1 are membrane-spanning proteins, transported via secretory and endocytic pathways; and the physical interaction of APP and BACE-1 during trafficking is a key cell biological event initiating the amyloidogenic pathway. Here, we highlight recent research on intracellular trafficking/sorting of APP and BACE-1, and discuss how dysregulation of these pathways might lead to enhanced convergence of APP and BACE-1, and subsequent β-cleavage of APP. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017.

Concepts: Alzheimer's disease, Protein, Pharmacology, Cell, Molecular biology, Cell membrane, Beta amyloid, Presenilin