Discover the most talked about and latest scientific content & concepts.

Journal: Development (Cambridge, England)


Studies on new arthropod models such as the beetle Tribolium castaneum are shifting our knowledge of embryonic patterning and morphogenesis beyond the Drosophila paradigm. In contrast to Drosophila, Tribolium embryos exhibit the short-germ type of development and become enveloped by extensive extra-embryonic membranes, the amnion and serosa. The genetic basis of these processes has been the focus of active research. Here, we complement genetic approaches with live fluorescence imaging of Tribolium embryos to make the link between gene function and morphogenetic cell behaviors during blastoderm formation and differentiation, germband condensation and elongation, and extra-embryonic development. We first show that transient labeling methods result in strong, homogeneous and persistent expression of fluorescent markers in Tribolium embryos, labeling the chromatin, membrane, cytoskeleton or combinations thereof. We then use co-injection of fluorescent markers with dsRNA for live imaging of embryos with disrupted caudal gene function caused by RNA interference. Using these approaches, we describe and compare cell and tissue dynamics in Tribolium embryos with wild-type and altered fate maps. We find that Tribolium germband condensation is effected by cell contraction and intercalation, with the latter being dependent on the anterior-posterior patterning system. We propose that germband condensation drives initiation of amnion folding, whereas expansion of the amniotic fold and closure of the amniotic cavity are likely driven by contraction of an actomyosin cable at the boundary between the amnion and serosa. Our methodology provides a comprehensive framework for testing quantitative models of patterning, growth and morphogenetic mechanisms in Tribolium and other arthropod species.

Concepts: DNA, Gene, Gene expression, RNA, Cell membrane, Developmental biology, Cellular differentiation, Embryogenesis


Transcription is an essential component of basic cellular and developmental processes. However, early embryonic development occurs in the absence of transcription and instead relies upon maternal mRNAs and proteins deposited in the egg during oocyte maturation. Although the early zebrafish embryo is competent to transcribe exogenous DNA, factors present in the embryo maintain genomic DNA in a state that is incompatible with transcription. The cell cycles of the early embryo titrate out these factors, leading to zygotic transcription initiation, presumably in response to a change in genomic DNA chromatin structure to a state that supports transcription. To understand the molecular mechanisms controlling this maternal to zygotic transition, it is important to distinguish between the maternal and zygotic transcriptomes during this period. Here we use exome sequencing and RNA-seq to achieve such discrimination and in doing so have identified the first zygotic genes to be expressed in the embryo. Our work revealed different profiles of maternal mRNA post-transcriptional regulation prior to zygotic transcription initiation. Finally, we demonstrate that maternal mRNAs are required for different modes of zygotic transcription initiation, which is not simply dependent on the titration of factors that maintain genomic DNA in a transcriptionally incompetent state.

Concepts: DNA, Protein, Gene, Genetics, Cell nucleus, Gene expression, Molecular biology, Messenger RNA


Observation of how cells divide, grow, migrate and form different parts of a developing organism is crucial for understanding developmental programs. Here, we describe a multicolor imaging tool named Raeppli (after the colorful confetti used at the carnival in Basel). Raeppli allows whole-tissue labeling such that the descendants of the majority of cells in a single organ are labeled and can be followed simultaneously relative to one another. We tested the use of Raeppli in the Drosophila melanogaster wing imaginal disc. Induction of Raeppli during larval stages irreversibly labels >90% of the cells with one of four spectrally separable, bright fluorescent proteins with low bias of selection. To understand the global growth characteristics of imaginal discs better, we induced Raeppli at various stages of development, imaged multiple fixed discs at the end of their larval development and estimated the size of their pouch primordium at those developmental stages. We also imaged the same wing disc through the larval cuticle at different stages of its development; the clones marked by Raeppli provide landmarks that can be correlated between multiple time points. Finally, we used Raeppli for continuous live imaging of prepupal eversion of the wing disc.

Concepts: Insect, Developmental biology, Larva, Model organism, Drosophila melanogaster, Drosophila, Imaginal disc, Imago


We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49f(hi)/EpCAM(-) population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis.

Concepts: Epithelium, Basement membrane, Basal lamina, Natural environment, Cornea, Connective tissue, Gland, Exocrine gland


In this work we use TALE nucleases (TALENs) to target a reporter construct to the DDX4 (vasa) locus in chicken primordial germ cells. Vasa is a key germ cell determinant in many animal species and is posited to control avian germ cell formation. We show that TALENs mediate homology directed repair of the DDX4 locus on the Z sex chromosome at high (8.1%) efficiencies. Large genetic deletions of 30kb encompassing the entire DDX4 locus were also created using a single TALEN pair. The targeted PGCs were germ line competent and were used to produce DDX4 null offspring. In DDX4 knockout chickens, PGCs are initially formed but are lost during meiosis in the developing ovary leading to adult female sterility. TALEN-mediated gene targeting in avian primordial germ cells is therefore an efficient process.

Concepts: DNA, Gene, Genetics, Archaea, Eukaryote, Chromosome, Meiosis, Germ cell


Fluorescently labeled structures can be spectrally isolated and imaged at high resolution in living embryos by light sheet microscopy. Multimodal imaging techniques are now needed to put these distinct structures back into the context of the surrounding tissue. We found that the bright-field contrast of unstained specimens in a selective plane illumination microscopy (SPIM) setup can be exploited for in vivo tomographic reconstructions of the three-dimensional anatomy of zebrafish, without causing phototoxicity. We report multimodal imaging of entire zebrafish embryos over several hours of development, as well as segmentation, tracking and automatic registration of individual organs.

Concepts: Biology, Optics, Developmental biology, Light, Medical imaging, Musical form, Image processing


A reduced rate of stem cell division is considered a widespread feature which ensures the integrity of genetic information during somatic development of plants and animals. Radial growth of plant shoots and roots is a stem cell-driven process that is fundamental for the mechanical and physiological support of enlarging plant bodies. In most dicotyledonous species, the underlying stem cell niche, the cambium, generates xylem inwards and phloem outwards. Despite the importance and intriguing dynamics of the cambium, the functional characterization of its stem cells is hampered by the lack of experimental tools for accessing distinct cambium sub-domains. Here, we use the hypocotyl of Arabidopsis thaliana to map stem cell activity in the proliferating cambium. Through pulse labeling and genetically encoded lineage tracing, we find that a single bifacial stem cell generates both xylem and phloem cell lineages. This cell is characterized by a specific combination of PXY (TDR), SMXL5 and WOX4 gene activity and a high division rate in comparison with tissue-specific progenitors. Our analysis provides a cellular fate map of radial plant growth, and suggests that stem cell quiescence is not a general prerequisite for life-long tissue production.This article has an associated ‘The people behind the papers’ interview.


Inducible loss of gene function experiments are necessary to uncover mechanisms underlying development, physiology and disease. However, current methods are complex, lack robustness and do not work in multiple cell types. Here we address these limitations by developing single-step optimized inducible gene knockdown or knockout (sOPTiKD or sOPTiKO) platforms. These are based on genetic engineering of human genomic safe harbors combined with an improved tetracycline-inducible system and CRISPR/Cas9 technology. We exemplify the efficacy of these methods in human pluripotent stem cells (hPSCs), and show that generation of sOPTiKD/KO hPSCs is simple, rapid and allows tightly controlled individual or multiplexed gene knockdown or knockout in hPSCs and in a wide variety of differentiated cells. Finally, we illustrate the general applicability of this approach by investigating the function of transcription factors (OCT4 and T), cell cycle regulators (cyclin D family members) and epigenetic modifiers (DPY30). Overall, sOPTiKD and sOPTiKO provide a unique opportunity for functional analyses in multiple cell types relevant for the study of human development.

Concepts: DNA, Gene, Genetics, Cell nucleus, Gene expression, Cell, Developmental biology, Stem cell


In the field of developmental biology, live imaging is a powerful tool for studying, in real time, the dynamic behaviors of tissues and cells during organ formation. Mammals, which develop in utero, have presented a challenge for live imaging. Here, we offer a novel, prolonged and robust live imaging system for visualizing the development of a variety of embryonic tissues in the midgestation mouse embryo. We demonstrate the advantages of this imaging system by following the dynamics of neural tube closure during mouse embryogenesis and reveal extensive movements of the cranial neural tissue that are independent of neural fold zipping.

Concepts: Embryo, Developmental biology, Cellular differentiation, Embryology, Human development, Morphogenesis, Neural tube, Drosophila embryogenesis


The neocortex is the seat of higher cognitive functions and, in evolutionary terms, is the youngest part of the mammalian brain. Since its origin, the neocortex has expanded in several mammalian lineages, and this is particularly notable in humans. This expansion reflects an increase in the number of neocortical neurons, which is determined during development and primarily reflects the number of neurogenic divisions of distinct classes of neural progenitor cells. Consequently, the evolutionary expansion of the neocortex and the concomitant increase in the numbers of neurons produced during development entail interspecies differences in neural progenitor biology. Here, we review the diversity of neocortical neural progenitors, their interspecies variations and their roles in determining the evolutionary increase in neuron numbers and neocortex size.

Concepts: Central nervous system, Nervous system, Psychology, Neuron, Brain, Human brain, Cerebral cortex, Neocortex