Discover the most talked about and latest scientific content & concepts.

Journal: Current microbiology


The use of glyphosate modifies the environment which stresses the living microorganisms. The aim of the present study was to determine the real impact of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. The presented results evidence that the highly pathogenic bacteria as Salmonella Entritidis, Salmonella Gallinarum, Salmonella Typhimurium, Clostridium perfringens and Clostridium botulinum are highly resistant to glyphosate. However, most of beneficial bacteria as Enterococcus faecalis, Enterococcus faecium, Bacillus badius, Bifidobacterium adolescentis and Lactobacillus spp. were found to be moderate to highly susceptible. Also Campylobacter spp. were found to be susceptible to glyphosate. A reduction of beneficial bacteria in the gastrointestinal tract microbiota by ingestion of glyphosate could disturb the normal gut bacterial community. Also, the toxicity of glyphosate to the most prevalent Enterococcus spp. could be a significant predisposing factor that is associated with the increase in C. botulinum-mediated diseases by suppressing the antagonistic effect of these bacteria on clostridia.

Concepts: Bacteria, Gut flora, Microbiology, Pathogen, Enterococcus, Clostridium, Firmicutes, Clostridium botulinum


In Pseudomonas aeruginosa PAO1, the pvdQ gene has been shown to have at least two functions. It encodes the acylase enzyme and hydrolyzes 3-oxo-C12-HSL, the key signaling molecule of quorum sensing system. In addition, pvdQ is involved in swarming motility. It is required and up-regulated during swarming motility, which is triggered by high cell densities. As high density bacterial populations also display elevated antibiotics resistance, studies have demonstrated swarm-cell differentiation in P. aeruginosa promotes increased resistance to various antibiotics. PvdQ acts as a signal during swarm-cell differentiation, and thus may play a role in P. aeruginosa antibiotic resistance. The aim of this study was to examine whether pvdQ was involved in modifying antibiotic susceptibility during swarming conditions and to investigate the mechanism by which this occurred. We constructed the PAO1pMEpvdQ strain, which overproduces PvdQ. PAO1pMEpvdQ promotes swarming motility, while PAO1ΔpvdQ abolishes swarming motility. In addition, both PAO1 and PAO1pMEpvdQ acquired resistance to ceftazidime, ciprofloxacin, meropenem, polymyxin B, and gentamicin, though PAO1pMEpvdQ exhibited a twofold to eightfold increase in antibiotic resistance compared to PAO1. These results indicate that pvdQ plays an important role in elevating antibiotic resistance via swarm-cell differentiation and possibly other mechanisms as well. We analyzed outer membrane permeability. Our data also suggest that pvdQ decreases P. aeruginosa outer membrane permeability, thereby elevating antibiotic resistance under swarming conditions. Our results suggest new approaches for reducing P. aeruginosa resistance.

Concepts: Bacteria, Antibiotic resistance, Pseudomonas aeruginosa, Phage therapy, Biofilm, Pseudomonas, Quorum sensing, Quinolone


We investigated D-amino acid oxidase (DAO) induction in the popular model yeast Schizosaccharomyces pombe. The product of the putative DAO gene of the yeast expressed in E. coli displayed oxidase activity to neutral and basic D-amino acids, but not to an L-amino acid or acidic D-amino acids, showing that the putative DAO gene encodes catalytically active DAO. DAO activity was weakly detected in yeast cells grown on a culture medium without D-amino acid, and was approximately doubled by adding D-alanine. The elimination of ammonium chloride from culture medium induced activity by up to eight-fold. L-Alanine also induced the activity, but only by about half of that induced by D-alanine. The induction by D-alanine reached a maximum level at 2 h cultivation; it remained roughly constant until cell growth reached a stationary phase. The best inducer was D-alanine, followed by D-proline and then D-serine. Not effective were N-carbamoyl-D,L-alanine (a better inducer of DAO than D-alanine in the yeast Trigonopsis variabilis), and both basic and acidic D-amino acids. These results showed that S. pombe DAO could be a suitable model for analyzing the regulation of DAO expression in eukaryotic organisms.

Concepts: Protein, Bacteria, Amino acid, Ammonia, Organism, Yeast, Model organism, Schizosaccharomyces pombe


Bacillus subtilis endospores have applications in different fields including their use as probiotics and antigen delivery vectors. Such specialized applications frequently require highly purified spore preparations. Nonetheless, quantitative data regarding both yields and purity of B. subtilis endospores after application of different growth conditions and purification methods are scarce or poorly reported. In the present study, we conducted several quantitative and qualitative analyses of growth conditions and purification procedures aiming generation of purified B. subtilis spores. Based on two growth media and different incubations conditions, sporulation frequencies up to 74.2 % and spore concentrations up to 7 × 10(9) spores/ml were achieved. Application of a simplified spore isolation method, in which samples were incubated with lysozyme and a detergent, resulted in preparations with highly purified spores at the highest yields. The present study represents, therefore, an important contribution for those working with B. subtilis endospores for different biotechnological purposes.

Concepts: Bacteria, Microbiology, Qualitative research, Spore, Bacillus, Quantitative research, Bacillus subtilis, Endospore


Klebsiella bacteria have emerged as an increasingly important cause of community-acquired nosocomial infections. Extensive use of broad-spectrum antibiotics in hospitalised patients has led to both increased carriage of Klebsiella and the development of multidrug-resistant strains that frequently produce extended-spectrum β-lactamases and/or other defences against antibiotics. Many of these strains are highly virulent and exhibit a strong propensity to spread. In this study, six lytic Klebsiella bacteriophages were isolated from sewage-contaminated river water in Georgia and characterised as phage therapy candidates. Two of the phages were investigated in greater detail. Biological properties, including phage morphology, nucleic acid composition, host range, growth phenotype, and thermal and pH stability were studied for all six phages. Limited sample sequencing was performed to define the phylogeny of the K. pneumoniae- and K. oxytoca-specific bacteriophages vB_Klp_5 and vB_Klox_2, respectively. Both of the latter phages had large burst sizes, efficient rates of adsorption and were stable under different adverse conditions. Phages reported in this study are double-stranded DNA bacterial viruses belonging to the families Podoviridae and Siphoviridae. One or more of the six phages was capable of efficiently lysing ~63 % of Klebsiella strains comprising a collection of 123 clinical isolates from Georgia and the United Kingdom. These phages exhibit a number of properties indicative of potential utility in phage therapy cocktails.

Concepts: DNA, Bacteria, Microbiology, Virus, Bacteriophage, Phage therapy, Klebsiella pneumoniae, Klebsiella


A haloalkaliphilic, thermophilic Bacillus strain (T14), isolated from a shallow hydrothermal vent of Panarea Island (Italy), produced a new exopolysaccharide (EPS). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain T14 was highly related (99 % similarity) to Bacillus licheniformis DSM 13(T) and Bacillus sonorensis DSM 13779(T). Further DNA-DNA hybridization analysis revealed 79.40 % similarity with B. licheniformis DSM 13(T) and 39.12 % with B. sonorensis DSM 13779(T). Sucrose (5 %) was the most efficient carbon source for growth and EPS production. The highest EPS production (366 mg l(-1)) was yielded in fermenter culture at 300 rpm after 48 h of incubation. The purified fraction EPS1 contained fructose/fucose/glucose/galactosamine/mannose in a relative proportion of 1.0:0.75:0.28:tr:tr and possessed a molecular weight of 1,000 kDa displaying a trisaccharide unit constituted by sugars with a β-manno-pyranosidic configuration. Screening for biological activity showed anti-cytotoxic effect of EPS1 against Avarol in brine shrimp test, indicating a potential use in the development of novel drugs.

Concepts: DNA, Molecular biology, Ribosomal RNA, Crustacean, 16S ribosomal RNA, 30S, Hydrothermal vent, Bacillus licheniformis


Bacillus thuringiensis (Bt) strains were isolated from soil samples of Great Nicobar Islands, one of the “hottest biodiversity hotspots,” where no collection has been characterized previously. The 36 new Bt isolates were obtained from 153 samples analyzed by crystal protein production with light/phase-contrast microscopy, determination of cry gene profile by SDS-PAGE, evaluation of toxicity against Coleopteran, and Lepidopteran insect pests, finally cloning and sequencing. Majority of the isolates showed the presence of 66-35 kDa protein bands on SDS-PAGE while the rest showed >130, 130, 73, and 18 kDa bands. The variations in crystal morphology and mass of crystal protein(s) purified from the isolates of Bt revealed genetic and molecular diversity. Based on the toxicity test, 50 % of isolates were toxic to Ash weevils, 16 % isolates were toxic to cotton bollworm, 38 % isolates were toxic both to ash weevil as well as cotton bollworm, while 11 % of the isolates did not exhibit any toxicity. PCR analysis unveiled prepotency of cry1B- and cry8b-like genes in these isolates. This study appoints the first isolation and characterization of local B. thuringiensis isolates in Great Nicobar Islands. Some of these isolates display toxic potential and, therefore, could be adopted for future applications to control some agriculturally important insect pests in the area of integrated pest management for sustainable agriculture.

Concepts: Gene, Agriculture, Molecular biology, Insect, Beetle, Bacillus thuringiensis, Biological pest control, Nicobar Islands


Mycoplasma pneumoniae causes chronic respiratory disease in humans. Factors thought to be important for colonization include the ability of the mycoplasma to form a biofilm on epithelial surfaces and the production of hydrogen peroxide to damage host tissue. Almost all of the mycoplasmas, including M. pneumoniae, lack superoxide dismutase and catalase and a balance should exist between peroxide production and growth. We show here that the addition of catalase to cultures enhanced the formation of biofilms and altered the structure. The incorporation of catalase in agar increased the number of colony-forming units detected and hence could improve the clinical diagnosis of mycoplasmal diseases.

Concepts: Bacteria, Respiratory disease, Superoxide dismutase, Hydrogen peroxide, Mycoplasma pneumoniae, Mycoplasma, Catalase, Mollicutes


To understand the mechanism of development of cross-resistance in food pathogen Bacillus cereus against an antimicrobial peptide pediocin and antibiotic alamethicin, the present study was designed. Pediococcus pentosaceus was taken as a source of pediocin, and it was purified by ammonium sulphate precipitation followed by cation exchange chromatography with 14.01-fold purity and 14.4 % recovery. B. cereus strains alamethicin-resistant strains (IC50 3.23 µg/ml) were selected from sensitive population with IC50 2.37 µg/ml. The development of resistance in B. cereus against alamethicin was associated with decrease in alamethicin-membrane interaction observed by in vitro assay. Resistant strain of B. cereus was found to harbour one additional general lipid as compared to sensitive strain, one amino group lacking phospholipid and one amino group containing phospholipid (ACP). In addition, ACP content was increased in resistant mutant (29.7 %) as compared to sensitive strain (14.56 %). The alamethicin-resistant mutant B. cereus also showed increased IC50 (58.8 AU/ml) for pediocin as compared to sensitive strain (IC50 47.8 AU/ml). Cross-resistance to pediocin and alamethicin in resistant mutant of B. cereus suggested a common mechanism of resistance. Therefore, this understanding could result in the development of peptide which will be effective against the resistant strains that share same mechanism of resistance.

Concepts: Bacteria, Amino acid, Ammonia, Microbiology, Antibiotic resistance, Pathogen, Bacillus, Bacillus cereus


Pseudomonas aeruginosa is a gram-negative bacterium that is frequently related to natural resistance to many drugs. In this work, the inhibition of growth against P. aeruginosa and multidrug-resistant P. aeruginosa (MDRPA) isolated from patients at Kyungpook National University was confirmed for hibicuslide C, essential oil components from Abutilon theophrasti. Hibicuslide C has antifungal activity with membrane disruption and apoptotic response against Candida albicans. However, its antibacterial activity was not reported yet. Cells treated with hibicuslide C was showed that its antipseudomonal activity is related to gDNA fragmentation and damage by TUNEL and gDNA electrophoresis. Furthermore, hibicuslide C worked synergistically with fluoroquinolones and rifampicin against MDRPA regardless of the ATP-associated mechanism. The antibiofilm activity possessed sole-resulting tissue culture plate method; besides that, the antibiofilm activity of other antibiotics was supported in particular MDRPA. The essential oil components like hibicuslide C may have antipseudomonal activity and, furthermore, increase in bacterial antibiotic susceptibility.

Concepts: Immune system, Bacteria, Microbiology, Antibiotic resistance, Pseudomonas aeruginosa, Cell wall, Antibiotic, Gram negative bacteria