SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Current biology : CB

317

Predator-prey dynamics are an important evolutionary driver of escalating predation mode and efficiency, and commensurate responses of prey [1-3]. Among these strategies, camouflage is important for visual concealment, with countershading the most universally observed [4-6]. Extant terrestrial herbivores free of significant predation pressure, due to large size or isolation, do not exhibit countershading. Modern predator-prey dynamics may not be directly applicable to those of the Mesozoic due to the dominance of very large, visually oriented theropod dinosaurs [7]. Despite thyreophoran dinosaurs' possessing extensive dermal armor, some of the most extreme examples of anti-predator structures [8, 9], little direct evidence of predation on these and other dinosaur megaherbivores has been documented. Here we describe a new, exquisitely three-dimensionally preserved nodosaurid ankylosaur, Borealopelta markmitchelli gen. et sp. nov., from the Early Cretaceous of Alberta, which preserves integumentary structures as organic layers, including continuous fields of epidermal scales and intact horn sheaths capping the body armor. We identify melanin in the organic residues through mass spectroscopic analyses and observe lighter pigmentation of the large parascapular spines, consistent with display, and a pattern of countershading across the body. With an estimated body mass exceeding 1,300 kg, B. markmitchelli was much larger than modern terrestrial mammals that either are countershaded or experience significant predation pressure as adults. Presence of countershading suggests predation pressure strong enough to select for concealment in this megaherbivore despite possession of massive dorsal and lateral armor, illustrating a significant dichotomy between Mesozoic predator-prey dynamics and those of modern terrestrial systems.

Concepts: Predation, Crypsis, Reptile, Mammal, Cretaceous, Dinosaur, Carnivore, Ankylosauria

309

While components of the pathway that establishes left-right asymmetry have been identified in diverse animals, from vertebrates to flies, it is striking that the genes involved in the first symmetry-breaking step remain wholly unknown in the most obviously chiral animals, the gastropod snails. Previously, research on snails was used to show that left-right signaling of Nodal, downstream of symmetry breaking, may be an ancestral feature of the Bilateria [1, 2]. Here, we report that a disabling mutation in one copy of a tandemly duplicated, diaphanous-related formin is perfectly associated with symmetry breaking in the pond snail. This is supported by the observation that an anti-formin drug treatment converts dextral snail embryos to a sinistral phenocopy, and in frogs, drug inhibition or overexpression by microinjection of formin has a chirality-randomizing effect in early (pre-cilia) embryos. Contrary to expectations based on existing models [3-5], we discovered asymmetric gene expression in 2- and 4-cell snail embryos, preceding morphological asymmetry. As the formin-actin filament has been shown to be part of an asymmetry-breaking switch in vitro [6, 7], together these results are consistent with the view that animals with diverse body plans may derive their asymmetries from the same intracellular chiral elements [8].

Concepts: DNA, Gene, Gene expression, Animal, Symmetry, Mollusca, Gastropod shell, Snail

296

One of the features that distinguishes modern humans from our extinct relatives and ancestors is a globular shape of the braincase [1-4]. As the endocranium closely mirrors the outer shape of the brain, these differences might reflect altered neural architecture [4, 5]. However, in the absence of fossil brain tissue, the underlying neuroanatomical changes as well as their genetic bases remain elusive. To better understand the biological foundations of modern human endocranial shape, we turn to our closest extinct relatives: the Neandertals. Interbreeding between modern humans and Neandertals has resulted in introgressed fragments of Neandertal DNA in the genomes of present-day non-Africans [6, 7]. Based on shape analyses of fossil skull endocasts, we derive a measure of endocranial globularity from structural MRI scans of thousands of modern humans and study the effects of introgressed fragments of Neandertal DNA on this phenotype. We find that Neandertal alleles on chromosomes 1 and 18 are associated with reduced endocranial globularity. These alleles influence expression of two nearby genes, UBR4 and PHLPP1, which are involved in neurogenesis and myelination, respectively. Our findings show how integration of fossil skull data with archaic genomics and neuroimaging can suggest developmental mechanisms that may contribute to the unique modern human endocranial shape.

296

The history of humankind is marked by the constant adoption of new dietary habits affecting human physiology, metabolism, and even the development of nutrition-related disorders. Despite clear archaeological evidence for the shift from hunter-gatherer lifestyle to agriculture in Neolithic Europe [1], very little information exists on the daily dietary habits of our ancestors. By undertaking a complementary -omics approach combined with microscopy, we analyzed the stomach content of the Iceman, a 5,300-year-old European glacier mummy [2, 3]. He seems to have had a remarkably high proportion of fat in his diet, supplemented with fresh or dried wild meat, cereals, and traces of toxic bracken. Our multipronged approach provides unprecedented analytical depth, deciphering the nutritional habit, meal composition, and food-processing methods of this Copper Age individual.

280

Balance arises from the interplay of external forces acting on the body and internally generated movements. Many animal bodies are inherently unstable, necessitating corrective locomotion to maintain stability. Understanding how developing animals come to balance remains a challenge. Here we study the interplay among environment, sensation, and action as balance develops in larval zebrafish. We first model the physical forces that challenge underwater balance and experimentally confirm that larvae are subject to constant destabilization. Larvae propel in swim bouts that, we find, tend to stabilize the body. We confirm the relationship between locomotion and balance by changing larval body composition, exacerbating instability and eliciting more frequent swimming. Intriguingly, developing zebrafish come to control the initiation of locomotion, swimming preferentially when unstable, thus restoring preferred postures. To test the sufficiency of locomotor-driven stabilization and the developing control of movement timing, we incorporate both into a generative model of swimming. Simulated larvae recapitulate observed postures and movement timing across early development, but only when locomotor-driven stabilization and control of movement initiation are both utilized. We conclude the ability to move when unstable is the key developmental improvement to balance in larval zebrafish. Our work informs how emerging sensorimotor ability comes to impact how and why animals move when they do.

Concepts: Developmental biology, Fish, Force, Centrifugation, Stability, Instability

274

Climate change and fisheries are transforming the oceans, but we lack a complete understanding of their ecological impact [1-3]. Environmental degradation can cause maladaptive habitat selection, inducing ecological traps with profound consequences for biodiversity [4-6]. However, whether ecological traps operate in marine systems is unclear [7]. Large marine vertebrates may be vulnerable to ecological traps [6], but their broad-scale movements and complex life histories obscure the population-level consequences of habitat selection [8, 9]. We satellite tracked postnatal dispersal in African penguins (Spheniscus demersus) from eight sites across their breeding range to test whether they have become ecologically trapped in the degraded Benguela ecosystem. Bayesian state-space and habitat models show that penguins traversed thousands of square kilometers to areas of low sea surface temperatures (14.5°C-17.5°C) and high chlorophyll-a (∼11 mg m(-3)). These were once reliable cues for prey-rich waters, but climate change and industrial fishing have depleted forage fish stocks in this system [10, 11]. Juvenile penguin survival is low in populations selecting degraded areas, and Bayesian projection models suggest that breeding numbers are ∼50% lower than if non-impacted habitats were used, revealing the extent and effect of a marine ecological trap for the first time. These cascading impacts of localized forage fish depletion-unobserved in studies on adults-were only elucidated via broad-scale movement and demographic data on juveniles. Our results support suspending fishing when prey biomass drops below critical thresholds [12, 13] and suggest that mitigation of marine ecological traps will require matching conservation action to the scale of ecological processes [14].

Concepts: Biodiversity, Demography, Fish, Ecology, Climate, Ecosystem, Ocean, Sea surface temperature

274

Ants can navigate over long distances between their nest and food sites using visual cues [1, 2]. Recent studies show that this capacity is undiminished when walking backward while dragging a heavy food item [3-5]. This challenges the idea that ants use egocentric visual memories of the scene for guidance [1, 2, 6]. Can ants use their visual memories of the terrestrial cues when going backward? Our results suggest that ants do not adjust their direction of travel based on the perceived scene while going backward. Instead, they maintain a straight direction using their celestial compass. This direction can be dictated by their path integrator [5] but can also be set using terrestrial visual cues after a forward peek. If the food item is too heavy to enable body rotations, ants moving backward drop their food on occasion, rotate and walk a few steps forward, return to the food, and drag it backward in a now-corrected direction defined by terrestrial cues. Furthermore, we show that ants can maintain their direction of travel independently of their body orientation. It thus appears that egocentric retinal alignment is required for visual scene recognition, but ants can translate this acquired directional information into a holonomic frame of reference, which enables them to decouple their travel direction from their body orientation and hence navigate backward. This reveals substantial flexibility and communication between different types of navigational information: from terrestrial to celestial cues and from egocentric to holonomic directional memories.

Concepts: Earth, Navigation, Classical mechanics, Rotation, Walking, Rigid body, Frame of reference, Drag-and-drop

267

Why females of some species cease ovulation prior to the end of their natural lifespan is a long-standing evolutionary puzzle [1-4]. The fitness benefits of post-reproductive helping could in principle select for menopause [1, 2, 5], but the magnitude of these benefits appears insufficient to explain the timing of menopause [6-8]. Recent theory suggests that the cost of inter-generational reproductive conflict between younger and older females of the same social unit is a critical missing term in classical inclusive fitness calculations (the “reproductive conflict hypothesis” [6, 9]). Using a unique long-term dataset on wild resident killer whales, where females can live decades after their final parturition, we provide the first test of this hypothesis in a non-human animal. First, we confirm previous theoretical predictions that local relatedness increases with female age up to the end of reproduction. Second, we construct a new evolutionary model and show that given these kinship dynamics, selection will favor younger females that invest more in competition, and thus have greater reproductive success, than older females (their mothers) when breeding at the same time. Third, we test this prediction using 43 years of individual-based demographic data in resident killer whales and show that when mothers and daughters co-breed, the mortality hazard of calves from older-generation females is 1.7 times that of calves from younger-generation females. Intergenerational conflict combined with the known benefits conveyed to kin by post-reproductive females can explain why killer whales have evolved the longest post-reproductive lifespan of all non-human animals.

Concepts: Scientific method, Human, Natural selection, Male, Reproduction, Evolution, Kin selection, Inclusive fitness

262

Countershading was one of the first proposed mechanisms of camouflage [1, 2]. A dark dorsum and light ventrum counteract the gradient created by illumination from above, obliterating cues to 3D shape [3-6]. Because the optimal countershading varies strongly with light environment [7-9], pigmentation patterns give clues to an animal’s habitat. Indeed, comparative evidence from ungulates [9] shows that interspecific variation in countershading matches predictions: in open habitats, where direct overhead sunshine dominates, a sharp dark-light color transition high up the body is evident; in closed habitats (e.g., under forest canopy), diffuse illumination dominates and a smoother dorsoventral gradation is found. We can apply this approach to extinct animals in which the preservation of fossil melanin allows reconstruction of coloration [10-15]. Here we present a study of an exceptionally well-preserved specimen of Psittacosaurus sp. from the Chinese Jehol biota [16, 17]. This Psittacosaurus was countershaded [16] with a light underbelly and tail, whereas the chest was more pigmented. Other patterns resemble disruptive camouflage, whereas the chin and jugal bosses on the face appear dark. We projected the color patterns onto an anatomically accurate life-size model in order to assess their function experimentally. The patterns are compared to the predicted optimal countershading from the measured radiance patterns generated on an identical uniform gray model in direct versus diffuse illumination. These studies suggest that Psittacosaurus sp. inhabited a closed habitat such as a forest with a relatively dense canopy. VIDEO ABSTRACT.

Concepts: Habitat, Light, Sunlight, Color, Lighting, Pigment, Paleontology, Dinosaur

259

Bright-red colors in vertebrates are commonly involved in sexual, social, and interspecific signaling [1-8] and are largely produced by ketocarotenoid pigments. In land birds, ketocarotenoids such as astaxanthin are usually metabolically derived via ketolation of dietary yellow carotenoids [9, 10]. However, the molecular basis of this gene-environment mechanism has remained obscure. Here we use the yellowbeak mutation in the zebra finch (Taeniopygia guttata) to investigate the genetic basis of red coloration. Wild-type ketocarotenoids were absent in the beak and tarsus of yellowbeak birds. The yellowbeak mutation mapped to chromosome 8, close to a cluster of cytochrome P450 loci (CYP2J2-like) that are candidates for carotenoid ketolases. The wild-type zebra finch genome was found to have three intact genes in this cluster: CYP2J19A, CYP2J19B, and CYP2J40. In yellowbeak, there are multiple mutations: loss of a complete CYP2J19 gene, a modified remaining CYP2J19 gene (CYP2J19(yb)), and a non-synonymous SNP in CYP2J40. In wild-type birds, CYP2J19 loci are expressed in ketocarotenoid-containing tissues: CYP2J19A only in the retina and CYP2J19B in the beak and tarsus and to a variable extent in the retina. In contrast, expression of CYP2J19(yb) is barely detectable in the beak of yellowbeak birds. CYP2J40 has broad tissue expression and shows no differences between wild-type and yellowbeak. Our results indicate that CYP2J19 genes are strong candidates for the carotenoid ketolase and imply that ketolation occurs in the integument in zebra finches. Since cytochrome P450 enzymes include key detoxification enzymes, our results raise the intriguing possibility that red coloration may be an honest signal of detoxification ability.

Concepts: DNA, Gene, Genetics, Gene expression, Evolution, Chromosome, Cytochrome P450, Zebra Finch