SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: ChemSusChem

28

The natural resistance to enzymatic deconstruction exhibited by lignocellulosic materials has designated pretreatment as a key step in the biological conversion of biomass to ethanol. Hydrothermal pretreatment in pure water represents a challenging approach because it is a method with low operational costs and does not involve the use of organic solvents, difficult to handle chemicals, and “external” liquid or solid catalysts. In the present work, a systematic study has been performed to optimize the hydrothermal treatment of lignocellulosic biomass (beech wood) with the aim of maximizing the enzymatic digestibility of cellulose in the treated solids and obtaining a liquid side product that could also be utilized for the production of ethanol or valuable chemicals. Hydrothermal treatment experiments were conducted in a batch-mode, high-pressure reactor under autogeneous pressure at varying temperature (130-220 °C) and time (15-180 min) regimes, and at a liquid-to-solid ratio (LSR) of 15. The intensification of the process was expressed by the severity factor, log R(o) . The major changes induced in the solid biomass were the dissolution/removal of hemicellulose to the process liquid and the partial removal and relocation of lignin on the external surface of biomass particles in the form of recondensed droplets. The above structural changes led to a 2.5-fold increase in surface area and total pore volume of the pretreated biomass solids. The enzymatic hydrolysis of cellulose to glucose increased from less than 7 wt % for the parent biomass to as high as 70 wt % for the treated solids. Maximum xylan recovery (60 wt %) in the hydrothermal process liquid was observed at about 80 wt % hemicellulose removal; this was accomplished by moderate treatment severities (log R(o) =3.8-4.1). At higher severities (log R(o) =4.7), xylose degradation products, mainly furfural and formic acid, were the predominant chemicals formed.

Concepts: Ethanol, Solid, Acetic acid, Solvent, Liquid, Cellulose, Ethanol fuel, Methanol

28

The reversible cycling of CaO adsorbents to CaCO(3) for high-temperature CO(2) capture is substantially improved by mechanical treatment. The mechanical milling intensity and conditions of grinding (e.g., wet vs. dry, planetary vs. vibratory milling) were determined to be the main factors that control the effectiveness of the mechanochemical synthesis to enhance the recycling stability of the sorbents prepared. In addition, MgO was used as an example of an inert binder to help mitigate CaCO(3) sintering. Wet planetary milling of MgO into CaCO(3) allowed efficient particle size reduction and the effective dispersion of MgO throughout the particles. Wet planetary milling yielded the most stable sorbents during 50 cycles of carbonation-calcination.

Concepts: Particle physics, Effect, Effectiveness, Particle, Heat transfer, Calcium oxide

27

A tube-in-tube reactor was successfully applied in homo- and heterogeneous olefin metathesis reactions under continuous flow mode. It was shown that the efficient removal of ethylene facilitated by connection of the reactor with a vacuum pump significantly improves the outcome of metathesis reactions. The beneficial aspects of this approach are most apparent in reactions performed at low concentration, such as macrocyclization reactions. The established system allows achievement of both improved yield and selectivity, and is ideal for industrial applications.

Concepts: Improve, Olefin metathesis, Alkene, Pressure, Richard R. Schrock, Scroll compressor, Rotary vane pump, Alkane metathesis

27

Treasure OVE: The performance of doped ceria for CO2 adsorption is investigated by oxygen vacancy engineering (OVE), that is, the formation and regeneration of oxygen vacancies. The doping and synthesis methods can be adapted to OVE, while reduction with hydrogen effectively restores the number of oxygen vacancies back to its original level. The regeneration characteristics of ceria and the catalytic conversion of adsorbed CO2 at moderate temperatures are also explored.

Concepts: Oxygen, Carbon dioxide, Iron, Hydrogen, Redox, Nitrogen, Carbon, Oxide

27

Down to the wire: Three-dimensional interconnected Si-based nanowires are produced through the combination of thermal decomposition of SiO and a metal-catalyzed nanowire growth process. This low-cost and scalable approach provides a promising candidate for high-capacity anodes in lithium-ion batteries.

Concepts: Nanowire, Rechargeable battery, Lithium-ion battery, Lithium-ion polymer battery, Nanowire battery, Nickel-metal hydride battery, Nickel-cadmium battery, Lithium iron phosphate battery

27

A highly stable high-temperature CO2 sorbent consisting of scaffold-like Ca-rich oxides (CaAlO) with rapid absorption kinetics and a high capacity is described. The Ca-rich oxides were prepared by annealing CaAlNO3 layered double hydroxide (LDH) precursors through a sol-gel process with Al(O(i) P)3 and Ca(NO3 )2 with Ca(2+) /Al(3+) ratios of 1:1, 2:1, 4:1, and 7:1. XRD indicated that only LDH powders were formed for Ca(2+) /Al(3+) ratios of 2:1. However, both LDH and Ca(OH)2 phases were produced at higher ratios. Both TEM and SEM observations indicated that the CaAlNO3 LDHs displayed a scaffold-like porous structure morphology rather than platelet-like particles. Upon annealing at 600 °C, a highly stable porous network structure of the CaO-based CaAlO mixed oxide (CAMO), composed of CaO and Ca12 Al14 O33 , was still present. The CAMO exhibited high specific surface areas (up to 191 m(2)  g(-1) ) and a pore size distribution of 3-6 nm, which allowed rapid diffusion of CO2 into the interior of the material, inducing fast carbonation/calcination and enhancing the sintering-resistant nature over multiple carbonation/calcination cycles for CO2 absorption at 700 °C. Thermogravimetric analysis results indicated that a CO2 capture capacity of approximately 49 wt % could be obtained with rapid absorption from the porous 7:1 CAMO sorbents by carbonation at 700 °C for 5 min. Also, 94-98 % of the initial CO2 capture capability was retained after 50 cycles of multiple carbonation/calcination tests. Therefore, the CAMO framework is a good isolator for preventing the aggregation of CaO particles, and it is suitable for long-term cyclic operation in high-temperature environments.

Concepts: Oxygen, Carbon dioxide, Oxide, Oxides, Hydroxide, Specific surface area, Hydroxides, Layered double hydroxides

27

Committed carbenes: The convenient application of bidentate carbene ligands is described for the hydrogenation of carboxylic acid esters. The ligand precursors are easily synthesized through the dimerization of N-substituted imidazoles with diiodomethane. The catalyst is generated in situ and exhibits good activity and functional group tolerance for the hydrogenation of aromatic and aliphatic carboxylic acid esters.

Concepts: Alcohol, Amine, Benzene, Acetic acid, Functional groups, Carboxylic acid, Amide, Aldehyde

27

The catalytic performance of a set of metal-organic frameworks [CuBTC, FeBTC, MIL-100(Fe), MIL-100(Cr), ZIF-8, MIL-53(Al)] was investigated in the Prins condensation of β-pinene with formaldehyde and compared with the catalytic behavior of conventional aluminosilicate zeolites BEA and FAU and titanosilicate zeolite MFI (TS-1). The activity of the investigated metal-organic frameworks (MOFs) increased with the increasing concentration of accessible Lewis acid sites in the order ZIF-8

Concepts: Chemical reaction, Hydrogen, Catalysis, Chemical equilibrium, Adsorption, Solid, Zeolite, ZSM-5

27

Following our previous report on the selective transformation of cellulose to ethylene glycol (EG) over a binary catalyst composed of tungstic acid and Ru/C, we herein report a new low-cost but more effective binary catalyst by using Raney nickel in place of Ru/C (Raney Ni+H2 WO4 ). In addition to tungstic acid, other W compounds were also investigated in combination with Raney Ni. The results showed that the EG yield depended on the W compound: H4 SiW12 O40

Concepts: Hydrogen, Catalysis, Hydrogenation, Catalytic converter, Alkene, Ethylene glycol, Nickel, Raney nickel

27

Herein, we report an effective approach to electricity storage in biofuels by selective electrocatalytic reduction of levulinic acid (LA) to high-energy-density valeric acid (VA) or γ-valerolactone (gVL) on a non-precious Pb electrode in a single-polymer electrolyte membrane electrocatalytic (flow) cell reactor with a very high yield of VA (>90 %), a high Faradaic efficiency (>86 %), promising electricity storage efficiency (70.8 %), and a low electricity consumption (1.5 kWh LVA -1 ). The applied potential and electrolyte pH can be used to accurately control the reduction products: lower overpotentials favor the production of gVL, whereas higher overpotentials facilitate the formation of VA. A selectivity of 95 % to VA in acidic electrolyte (pH 0) and 100 % selectivity to gVL in neutral electrolyte (pH 7.5) are obtained. The effect of the molecular structure on the electrocatalytic reduction of ketone and aldehyde groups of biomass compounds was investigated. Whereas LA can be fully electroreduced to VA though a four-electron transfer, the CO groups are only electroreduced to OH by a two-electron-transfer process when glyoxylic acid and pyruvic acid serve as feedstocks.

Concepts: Alcohol, Carbon dioxide, Acid, Electrochemistry, Ethanol, Carboxylic acid, Glyoxylic acid, Pyruvic acid