Discover the most talked about and latest scientific content & concepts.

Journal: Chemistry Central journal


BACKGROUND: Despite considerable global investigation over several decades, the roles of vitamin D in health and disease development remains convoluted. One recognised issue is the difficulty of accurately measuring the active forms of vitamin D. Advances made include some new methods addressing the potential interference by excluding epimers and isobars. However, there is no evidence that epimers are without function. Therefore, the aim of this study was to develop and validate, for the first time, a new assay to simultaneously measure levels of 6 forms of vitamin D along with two epimers. The assay was applied to multilevel certified reference material calibrators and 25 pooled human sera samples obtained from the Vitamin D External Quality Assessment Scheme (DEQAS) to demonstrate its efficiency. RESULTS: The assay is capable of simultaneously measuring 8 vitamin D analogues over the calibration ranges and LODs (in nmol/L) of: 1alpha25(OH)2D2 [0.015-1; 0.01], 1alpha25(OH)2D3 [0.1-100; 0.01], 25OHD3 [0.5-100, 0.025], 3-epi-25OHD3 [0.1-100, 0.05], 25OHD2 [0.5-100, 0.025], 3-epi-25OHD2 [0.1-100, 0.05], vitamin D3 [0.5-100, 0.05] and vitamin D2 [0.5-100, 0.05], using stanozolol-d3 as internal standard. Certified reference material calibrators and external quality control samples (DEQAS) were analysed to meet the standards outlined by National Institute of Standards and Technology (NIST). Validation steps included recovery and both precision and accuracy under inter- and intra-day variation limit of detection, and analysis of each analyte over a linear range. All validation parameters were in line with acceptable Food and Drug Administration (FDA) guidelines and the standards of the National Institute of Standards and Technology (NIST). All eight analogues were quantified with the 25OHD levels being commensurate with DEQAS data. CONCLUSIONS: This report details the application of a new LC-MS/MS based assay for the efficient analysis of eight analogues of vitamin D over a range of samples, which is a significant advance over the existing methods. Simultaneous measure of 8 vitamin D analogues does not compromise the analytical capability of the assay to quantify the commonly used biomarker (25OHD) for vitamin D status. The results demonstrate the feasibility of applying the assay in research and clinical practice that i) excludes misleading measures owing to epimers and isobars and ii) is able to quantify the excluded component to facilitate further in vivo investigation into the roles of ubiquitous epimers.

Concepts: Vitamin D, Mass spectrometry, Measurement, Validation, Analytical chemistry, Standard, Calibration, Certified reference materials


BACKGROUND: Recently, various metallocenes were synthesized and analyzed by biological activity point of view (such as antiproliferative properties): ruthenocenes, cobaltoceniums, titanocenes, zirconocenes, vanadocenes, niobocenes, molibdocenes etc. Two main disadvantages of metallocenes are the poor hydrosolubility and the hydrolytic instability. These problems could be resolved in two ways: synthetically modifying the structure or finding new formulations with enhanced properties. The aqueous solubility of metallocenes with cytostatic activities could be enhanced by molecular encapsulation in cyclodextrins, as well as the hydrolytic instability of these compounds could be reduced. RESULTS: This study presents a theoretical approach on the nanoencapsulation of a series of titanocenes with cytotoxic activity in alpha-, beta-, and gamma-cyclodextrin. The HyperChem 5.11 package was used for building and molecular modelling of titanocene and cyclodextrin structures, as well as for titanocene/cyclodextrin complex optimization. For titanocene/cyclodextrin complex optimization experiments, the titanocene and cyclodextrin structures in minimal energy conformations were set up at various distances and positions between molecules (molecular mechanics functionality, MM+). The best interaction between titanocene structures and cyclodextrins was obtained in the case of beta- and gamma-cyclodextrin, having the hydrophobic moieties oriented to the secondary face of cyclodextrin. The hydrophobicity of titanocenes (logP) correlate with the titanocene-cyclodextrin interaction parameters, especially with the titanocene-cyclodextrin interaction energy; the compatible geometry and the interaction energy denote that the titanocene/beta- and gamma-cyclodextrin complex can be achieved. Valuable quantitative structure-activity relationships (QSARs) were also obtained in the titanocene class by using the same logP as the main parameter for the in vitro cytotoxic activity against HeLa, K562, and Fem-x cell lines. CONCLUSIONS: According to our theoretical study, the titanocene/cyclodextrin inclusion compounds can be obtained (high interaction energy; the encapsulation is energetically favourable). Further, the most hydrophobic compounds are better encapsulated in beta- and gamma-cyclodextrin molecules and are more stable (from energetically point of view) in comparison with alpha-cyclodextrin case. This study suggests that the titanocene / beta- and gamma-cyclodextrin complexes (or synthetically modified cyclodextrins with higher water solubility) could be experimentally synthesized and could have enhanced cytotoxic activity and even lower toxicity.

Concepts: Molecule, Chemistry, Solubility, Computational chemistry, Experiment, Supramolecular chemistry, Molecular modelling, Cyclodextrin


BACKGROUND: The new combination of moxifloxacin HCl and cefixime trihydrate is approved for the treatments of lower respiratory tract infections in adults. At initial formulation development and screening stage a fast and reliable method for the dissolution and release testing of moxifloxacin and cefixime were highly desirable. The zero order overlaid UV spectra of moxifloxacin and cefixime showed >90% of spectra are overlapping. Hence, simple, accurate precise and validated two derivative spectrophotometric methods have been developed for the determination of moxifloxacin and cefixime. METHODS: In the first derivative spectrophotometric method varying concentration of moxifloxacin and cefixime were prepared and scanned in the range of 200 to 400 nm and first derivative spectra were calculated (n = 1). The zero crossing wavelengths 287 nm and 317.9 nm were selected for determination of moxifloxacin and cefixime, respectively. In the second method the first derivative of ratio spectra was calculated and used for the determination of moxifloxacin and cefixime by measuring the peak intensity at 359.3 nm and 269.6 nm respectively. RESULTS: Calibration graphs were established in the range of 1–16 mug /mL and 1–15 mug /mL for both the drugs by first and ratio first derivative spectroscopic methods respectively with good correlation coefficients. Average accuracy of assay of moxifloxacin and cefixime were found to be 100.68% and 98 93%, respectively. Relative standard deviations of both inter and intraday assays were less than 1.8%. Moreover, recovery of moxifloxacin and cefixime was more than 98.7% and 99.1%, respectively. CONCLUSIONS: The described derivative spectrophotometric methods are simple, rapid, accurate, precise and excellent alternative to sophisticated chromatographic techniques. Hence, the proposed methods can be used for the quality control of the cited drugs and can be extended for routine analysis of the drugs in formulations.

Concepts: Spectroscopy, Ultraviolet, Respiratory system, Upper respiratory tract, Accuracy and precision, Lower respiratory tract, Ultraviolet-visible spectroscopy, Spectrophotometry


BACKGROUND: Microalgae have attracted major interest as a sustainable source for biodiesel production on commercial scale. This paper describes the screening of six microalgal species, Scenedesmus quadricauda, Scenedesmus acuminatus, Nannochloropsis sp., Anabaena sp., Chlorella sp. and Oscillatoria sp., isolated from fresh and marine water resources of southern Pakistan for biodiesel production and the GC-MS/MS analysis of their fatty acid methyl esters (FAMEs). RESULTS: Growth rate, biomass productivity and oil content of each algal species have been investigated under autotrophic condition. Biodiesel was produced from algal oil by acid catalyzed transesterification reaction and resulting fatty acid methyl esters (FAMEs) content was analyzed by GC/MS. Fatty acid profiling of the biodiesel, obtained from various microalgal oils showed high content of C-16:0, C-18:0, cis-Delta9C-18:1, cis-Delta11C-18:1 (except Scenedesmus quadricauda) and 10-hydroxyoctadecanoic (except Scenedesmus acuminatus). Absolute amount of C-14:0, C-16:0 and C-18:0 by a validated GC-MS/MS method were found to be 1.5-1.7, 15.0-42.5 and 4.2-18.4 mg/g, respectively, in biodiesel obtained from various microalgal oils. Biodiesel was also characterized in terms of cetane number, kinematic viscosity, density and higher heating value and compared with the standard values. CONCLUSION: Six microalgae of local origin were screened for biodiesel production. A method for absolute quantification of three important saturated fatty acid methyl esters (C-14, C-16 and C-18) by gas chromatography-tandem mass spectrometry (GC-MS/MS), using multiple reactions monitoring (MRM) mode, was employed for the identification and quantification of biodiesels obtained from various microalgal oils. The results suggested that locally found microalgae can be sustainably harvested for the production of biodiesel. This offers the tremendous economic opportunity for an energy-deficient nation.

Concepts: Fatty acid, Water, Fat, Liquid, Ester, Saturated fat, Biodiesel, Biodiesel production


BACKGROUND: Cigarette smoking is a cause of a variety of serious diseases, and to understand the toxicological impact of tobacco smoke in vitro, whole smoke exposure systems can be used. One of the main challenges of the different whole smoke exposure systems that are commercially available is that they dilute and deliver smoke in different ways, limiting/restricting the cross-comparison of biological responses. This is where dosimetry – dose quantification – can play a key role in data comparison. Quartz crystal microbalance (QCM) technology has been put forward as one such tool to quantify smoke particle deposition in vitro, in real-time. RESULTS: Using four identical QCMs, installed into the Vitrocell® mammalian 6/4 CF Stainless exposure module, we were able to quantify deposited smoke particle deposition, generated and diluted by a Vitrocell® VC 10 Smoking Robot. At diluting airflows 0.5-4.0 L/min and vacuum flow rate 5 ml/min/well through the exposure module, mean particle deposition was in the range 8.65 +/- 1.51 mug/cm2-0.72 +/- 0.13 mug/cm2. Additionally, the effect of varying vacuum flow rate on particle deposition was assessed from 5 ml/min/well - 100 ml/min/well. Mean deposited mass for all four airflows tested per vacuum decreased as vacuum rate was increased: mean deposition was 3.79, 2.75, 1.56 and 1.09 mug/cm2 at vacuum rates of 5, 10, 50 and 100 ml/min/well respectively. CONCLUSIONS: QCMs within the Vitrocell® exposure module have demonstrated applicability at defining particle dose ranges at various experimental conditions. This tool will prove useful for users of the Vitrocell® system for dose–response determination and QC purposes.

Concepts: Smoking, Tobacco, Tobacco smoking, Cigarette, Nicotine, Quartz, Quartz crystal microbalance


The intensely increasing multi-drug resistant microbial infections have encouraged the search for new antimicrobial agents. Hydrazone derivatives are known to exhibit a wide variety of biological activities including anti-microbial. In heterocyclic moiety, imidazo[1,2-a]pyrimidines are the subject of immense interest for their antimicrobial activity and also for their analgesic, antipyretic and anti-inflammatory properties.

Concepts: Microbiology, Antimicrobial, Tea tree oil


BACKGROUND: Biotransformation offers chemo enzymatic system to modify the compounds into their novel analogues which are difficult to synthesize by chemical methods. This paper describes the biotransformational studies of ambrox, one of the most important components of natural Ambergris (wale sperm) with fungal and plant cell culture. RESULTS: Biotransformation of ()-ambrox (1) with a fungal cell culture of Macrophomina phaseolina and a plant cell suspension cultures of Peganum harmala yielded oxygenated products, 3beta- hydroxyambrox (2), 6beta-hydroxyambrox (3), 1alpha-hydroxy-3oxoambrox (4), 1alpha,3beta- dihydroxyambrox (5), 13,14,15,16-tetranorlabdane-3-oxo-8,12-diol (6), 3-oxoambrox (7), 2alpha- hydroxyambrox (8), 3beta-hydroxysclareolide (9), and 2alpha,3beta-dihydroxyambrox (10). Metabolite 4 was found to be new compound. These metabolites were structurally characterized on the basis of spectroscopic studies. CONCLUSION: Nine oxygenated metabolites of ()-ambrox (1) were obtained from Macrophomina phaseolina and Peganum harmala. Enzymatic system of screened organisms introduced hydroxyl and keto functionalities at various positions of compound 1 in a stereo- and regiocontrolled manner.

Concepts: Cell, Bacteria, Metabolism, Eukaryote, Cell culture, Cell wall, Chemical compound, Harmal


BACKGROUND: Buckwheat flour and buckwheat sprouts possess antioxidant properties, and previous studies have reported on buckwheat flour displaying an inhibitory activity for angiotensin-I converting enzyme (ACE). Information is lacking on the bioactivity of other parts of the buckwheat, such as the seed hulls and plant stalks. This study investigates the ACE inhibitory activity and antioxidant activity of various parts of 2 types of buckwheat, namely, common buckwheat (Fagopyrum esculentum Moench) and tartary buckwheat (Fagopyrum tataricum Gaertn). METHODS: For high throughput screening, we used a microplate fluometric assay to evaluate the ACE inhibitory effects of various extracts and the ferric-reducing antioxidant power (FRAP) assay to evaluate antioxidant activity. RESULTS: The extract of common hulls extracted using 50% (v/v)-ethanol solvent presented a remarkable inhibitory activity. The value of IC50 is 30 g ml-1. The extracts of both common and tartary hulls extracted using 50% (v/v)-ethanol solvent demonstrated an antioxidant activity that is superior to that of other extracts. CONCLUSION: This study determined that the ethanolic extract of the hulls of common buckwheat presented more favorable antioxidant and ACE inhibitory abilities. However, the correlation of antioxidant activity and ACE inhibitory activity for all 18 types of extracts is low. The ACE inhibitory activity could have been caused by a synergistic effect of flavonoids or from other unidentified components in the extracts. The ethanolic extract of common hulls demonstrated remarkable ACE inhibitory activity and is worthy of further animal study.

Concepts: Antioxidant, Starch, Pasta, Polygonaceae, Rutin, Buckwheat, Fagopyrum, Tartary Buckwheat


There is considerable interest from a regulatory and public health perspective in harmful and potentially harmful constituents in tobacco products, including smokeless tobacco products (STPs). A wide range of commercial STPs from the US and Sweden, representing 80-90 % of the 2010 market share for all the major STP categories in these two countries, were analysed for the IARC Group 2A carcinogen acrylamide. These STPs comprised the following styles: Swedish loose and portion snus, US snus, chewing tobacco, moist snuff, dry snuff, soft pellet, hard pellet and plug.

Concepts: Tobacco, Nicotine, Carcinogen, Dipping tobacco, Tobacco products, Snus, Snuff, Chewing tobacco


Citrus fruits, which are cultivated worldwide, have been recognized as some of the most high-consumption fruits in terms of energy, nutrients and health supplements. What is more, a number of these fruits have been used as traditional medicinal herbs to cure diseases in several Asian countries. Numerous studies have focused on Citrus secondary metabolites as well as bioactivities and have been intended to develop new chemotherapeutic or complementary medicine in recent decades. Citrus-derived secondary metabolites, including flavonoids, alkaloids, limonoids, coumarins, carotenoids, phenolic acids and essential oils, are of vital importance to human health due to their active properties. These characteristics include anti-oxidative, anti-inflammatory, anti-cancer, as well as cardiovascular protective effects, neuroprotective effects, etc. This review summarizes the global distribution and taxonomy, numerous secondary metabolites and bioactivities of Citrus fruits to provide a reference for further study. Flavonoids as characteristic bioactive metabolites in Citrus fruits are mainly introduced.

Concepts: Medicine, Health, Nutrition, Chemotherapy, Citrus, Orange, Herbalism, Essential oil