SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Chemical research in toxicology

66

Carbaryl (1-naphthyl methylcarbamate) and carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) are among the most toxic insecticides, implicated in a variety of diseases including diabetes and cancer among others. Using an integrated pharmacoinformatics based screening approach, we have identified these insecticides to be structural mimics of the neurohormone melatonin and were able to bind to the putative melatonin binding sites in MT1 and MT2 melatonin receptors in silico. Carbaryl and carbofuran then were tested for competition with 2-[125I]-iodomelatonin (300 pM) binding to hMT1 or hMT2 receptors stably expressed in CHO cells. Carbaryl and carbofuran showed higher affinity for competition with 2-[125I]-iodomelatonin binding to the hMT2 compared to the hMT1 melatonin receptor (33 and 35-fold difference, respectively) as predicted by the molecular modeling. In the presence of GTP (100 µM), which decouples the G-protein linked receptors to modulate signaling, the apparent efficacy of carbaryl and carbofuran for 2-[125I]-iodomelatonin binding for the hMT1 melatonin receptor was not affected but significantly decreased for the hMT2 melatonin receptor compatible with receptor antagonist/inverse agonist and agonist efficacy, respectively. Altogether, our data points to a potentially new mechanism through which carbamate insecticides carbaryl and carbofuran could impact human health by altering the homeostatic balance of key regulatory processes by directly binding to melatonin receptors.

Concepts: Protein, Signal transduction, Melatonin receptor, Carbamate

59

Humulus lupulus L. (hops) is a popular botanical dietary supplement used by women as a sleep aid and for post-menopausal symptom relief. In addition to its efficacy for menopausal symptoms, hops could also modulate the chemical estrogen carcinogenesis pathway and potentially protect women from breast cancer. In the present study, an enriched hop extract and the key bioactive compounds [6-prenylnarigenin (6-PN), 8-prenylnarigenin (8-PN), isoxanthohumol (IX), xanthohumol (XH)] were tested for their effects on estrogen metabolism in breast cells (MCF-10A and MCF-7). The methoxyestrones (2-/4-MeOE1) were analyzed as biomarkers for the non-toxic P450 1A1 catalyzed 2-hydroxylation and the genotoxic P450 1B1 catalyzed 4-hydroxylation pathways. The results indicated that the hop extract and 6-PN preferentially induced the 2-hydroxylation pathway in both cell lines. 8-PN only showed slight up-regulation of metabolism in MCF-7 cells, whereas IX and XH did not have significant effects in either cell line. To further explore the influence of hops and the compounds on P450 1A1/1B1, mRNA expression and ethoxyresorufin O-dealkylase (EROD) activity were measured. The results correlated with the metabolism data and showed that hop extract and 6-PN preferentially enhanced P450 1A1 mRNA expression and increased P450 1A1/1B1 activity. The aryl hydrocarbon receptor (AhR) activation by the compounds was tested using xenobiotic response element (XRE) luciferase construct transfected cells. 6-PN was found to be an AhR agonist that significantly induced XRE activation and inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced XRE activity. 6-PN mediated induction of EROD activity was also inhibited by the AhR antagonist CH223191. These data show that the hop extract and 6-PN preferentially enhance the benign estrogen 2-hydroxylation pathway through AhR mediated up-regulation of P450 1A1, which further emphasizes the importance of standardization of botanical extracts to chemical markers that indicate both safety and desired bioactivity.

Concepts: Gene expression, Breast cancer, Metabolism, Menopause, Estrogen, Breast, Humulus lupulus, Hops

42

Pigment-grade titanium dioxide (TiO2) of 200-300 nm particle diameter is one of the most widely used submicron-sized particle materials. Inhaled and ingested TiO2 particles are known to enter the bloodstream, to be phagocytized by macrophages and neutrophils, to be inflammatory, and to activate the NLRP3 inflammasome. In this pilot study of 11 pancreatic specimens, 8 of the type 2 diabetic pancreas and 3 of the non-diabetic pancreas, we show that 110±70 nm average diameter TiO2 crystals abound in the type 2 diabetic pancreas, but not in the non-diabetic pancreas. In the type 2 diabetic pancreas, their count is as high as 108 -109 per gram.

28

There is interest in the relative toxicities of emissions from electronic cigarettes and tobacco cigarettes. Lists of cigarette smoke priority toxicants have been developed to focus regulatory initiatives. However, a comprehensive assessment of e-cigarette chemical emissions including all tobacco smoke Harmful and Potentially Harmful Constituents, and additional toxic species reportedly present in e-cigarette emissions, is lacking. We examined 150 chemical emissions from an e-cigarette (Vype ePen), a reference tobacco cigarette (Ky3R4F), and laboratory air/method blanks. All measurements were conducted by a contract research laboratory using ISO 17025 accredited methods. The data show that it is essential to conduct laboratory air/method measurements when measuring e-cigarette emissions, owing to the combination of low emissions and the associated impact of laboratory background that can lead to false-positive results and overestimates. Of the 150 measurands examined in the e-cigarette aerosol, 104 were not detected and 21 were present due to laboratory background. Of the 25 detected aerosol constituents, 9 were present at levels too low to be quantified and 16 were generated in whole or in part by the e-cigarette. These comprised major e-liquid constituents (nicotine, propylene glycol, and glycerol), recognized impurities in Pharmacopoeia-quality nicotine, and eight thermal decomposition products of propylene glycol or glycerol. By contrast, approximately 100 measurands were detected in mainstream cigarette smoke. Depending on the regulatory list considered and the puffing regime used, the emissions of toxicants identified for regulation were from 82 to >99% lower on a per-puff basis from the e-cigarette compared with those from Ky3R4F. Thus, the aerosol from the e-cigarette is compositionally less complex than cigarette smoke and contains significantly lower levels of toxicants. These data demonstrate that e-cigarettes can be developed that offer the potential for substantially reduced exposure to cigarette toxicants. Further studies are required to establish whether the potential lower consumer exposure to these toxicants will result in tangible public health benefits.

Concepts: Smoking, Tobacco, Tobacco smoking, Cigarette, Nicotine, Electronic cigarette, Propylene glycol, Glycerol

28

trans-2-Hexenal (2-hexenal) is an α,β-unsaturated aldehyde that occurs naturally in a wide range of fruits, vegetables, and spices. 2-Hexenal as well as other α,β-unsaturated aldehydes that are natural food constituents or flavoring agents may raise a concern for genotoxicity due to the ability of the α,β-unsaturated aldehyde moiety to react with DNA. Controversy remains, however, on whether α,β-unsaturated aldehydes result in significant DNA adduct formation in vivo at realistic dietary exposure. In this study, a rat physiologically based in silico model was developed for 2-hexenal as a model compound to examine the time- and dose-dependent detoxification and DNA adduct formation of this selected α,β-unsaturated aldehyde. The model was developed based on in vitro and literature-derived parameters, and its adequacy was evaluated by comparing predicted DNA adduct formation in the liver of rats exposed to 2-hexenal with reported in vivo data. The model revealed that at an exposure level of 0.04 mg/kg body weight, a value reflecting estimated daily human dietary intake, 2-hexenal is rapidly detoxified predominantly by conjugation with glutathione (GSH) by glutathione S-transferases. At higher dose levels, depletion of GSH results in a shift to 2-hexenal oxidation and reduction as the major pathways for detoxification. The level of DNA adduct formation at current levels of human dietary intake was predicted to be more than 3 orders of magnitude lower than endogenous DNA adduct levels. These results support that rapid detoxification of 2-hexenal reduces the risk arising from 2-hexenal exposure and that at current dietary exposure levels, DNA adduct formation is negligible.

Concepts: Alcohol, Redox, In vivo, Carbonyl, In vitro, In Silico, In situ, Glutathione S-transferase

28

Ambient airborne particulate matter is known to cause various adverse health effects in humans. In a recent study on the environmental impacts of coal and tire combustion in a thermal power station, fine crystals of PbSO(4) (anglesite), ZnSO(4)·H(2)O (gunningite), and CaSO(4) (anhydrite) were identified in the stack emissions. Here, we have studied the toxic potential of these sulfate phases as particulates and their uptake in human alveolar epithelial cells (A549). Both PbSO(4) and CaSO(4) yielded no loss of cell viability, as determined by the WST-1 and NR assays. In contrast, a concentration-dependent increase in cytotoxicity was observed for Zn sulfate. For all analyzed sulfates, an increase in the production of reactive oxygen species (ROS), assessed by the DCFH-DA assay and EPR, was observed, although to a varying extent. Again, Zn sulfate was the most active compound. Genotoxicity assays revealed concentration-dependent DNA damage and induction of micronuclei for Zn sulfate and, to a lower extent, for CaSO(4), whereas only slight effects could be found for PbSO(4). Moreover, changes of the cell cycle were observed for Zn sulfate and PbSO(4). It could be shown further that Zn sulfate increased the nuclear factor kappa-B (NF-κB) DNA binding activity and activated JNK. During our TEM investigations, no effect on the appearance of the A549 cells exposed to CaSO(4) compared to the nonexposed cells was observed, and in our experiments, only one CaSO(4) particle was detected in the cytoplasm. In the case of exposure to Zn sulfate, no particles were found in the cytoplasm of A549 cells, but we observed a concentration-dependent increase in the number and size of dark vesicles (presumably zincosomes). After exposure to PbSO(4), the A549 cells contained isolated particles as well as agglomerates both in vesicles and in the cytoplasm. Since these metal-sulfate particles are emitted into the atmosphere via the flue gas of coal-fired power stations, they may be globally abundant. Therefore, our study is of direct relevance to populations living near such power plants.

Concepts: Cell, Mitochondrion, Particulate, Chemical engineering, Air pollution, Nuclear power, Cooling tower, Coal-fired power station

27

Consumer and environmental safety decisions are based on exposure and hazard data, interpreted using risk assessment approaches. The adverse outcome pathway (AOP) conceptual framework has been presented as a logical sequence of events or processes within biological systems which can be used to understand adverse effects and refine current risk assessment practices in ecotoxicology. This framework can also be applied to human toxicology and is explored, based around investigating the molecular initiating events (MIEs) of compounds. The precise definition of the MIE has yet to reach general acceptance. In this work we present a unified MIE definition: an MIE is the initial interaction between a molecule and a biomolecule or biosystem that can be causally linked to an outcome via a pathway. Case studies are presented and flaws with current definitions are addressed. With the development of a unified MIE definition the field can look towards defining, classifying and characterizing more MIEs, and using knowledge of the chemistry of these processes to aid AOP research and toxicity risk assessment. We also present the role of MIE research in the development of in vitro and in silico toxicology and suggest how, by using a combination of biological and chemical approaches, MIEs can be identified and characterized despite a lack of detailed reports, even for some of the most studied molecules in toxicology.

Concepts: Molecular biology, Molecule, Chemistry, Atom, Definition, In vitro, Chemical compound, Aristotle

27

Mefenamic acid, (MFA), a carboxylic acid-containing nonsteroidal anti-inflammatory drug (NSAID), is metabolized into the chemically-reactive conjugates MFA-1-O-acyl-glucuronide (MFA-1-O-G) and MFA-S-acyl-CoA (MFA-CoA), which are both implicated in the formation of MFA-S-acyl-glutathione (MFA-GSH) conjugates, protein-adduct formation and thus the potential toxicity of the drug. However, current studies suggest that an additional acyl-linked metabolite may be implicated in the formation of MFA-GSH. In the present study, we investigated the ability of MFA to become bioactivated into the acyl-linked metabolite, mefenamyl-adenylate (MFA-AMP). In vitro incubations in rat hepatocytes with MFA (100 µM), followed by LC-MS/MS analyses of extracts, led to the detection of MFA-AMP. In these incubations, the initial rate of MFA-AMP formation was rapid, leveling off at a maximum concentration of 90.1 nM (20 sec), while MFA-GSH formation increased linearly, reaching a concentration of 1.7 µM after 60 min incubation. In comparison, MFA-CoA was undetectable in incubation extracts until the 4 min time point, achieving a concentration of 45.6 nM at the 60 min time point, MFA-1-O-G formation was linear attaining a concentration of 42.2 µM after 60 min incubation. In vitro incubation in buffer with the model nucleophile glutathione (GSH) under physiological conditions showed MFA-AMP to be reactive towards GSH, but 11-fold less reactive than MFA-CoA, while MFA-1-O-G exhibited little reactivity. However, in the presence of glutathione-S-transferase (GST), MFA-AMP mediated formation of MFA-GSH increased 6-fold, while MFA-CoA mediated formation of MFA-GSH only increased 1.4-fold. Collectively, in addition to the MFA-1-O-G, these results demonstrate that mefenamic acid does become bioactivated by acyl-CoA synthetase enzyme(s) in vitro in rat hepatocytes into the reactive transacylating derivatives MFA-AMP and MFA-CoA, both of which contribute to the transacylation of GSH and may be involved in the formation of protein adducts and potentially elicit an idiosyncratic toxicity.

Concepts: Non-steroidal anti-inflammatory drug, Anti-inflammatory, Paracetamol, Ibuprofen, Diclofenac

27

So far there is limited information on biotransformation mechanisms and products of polar contaminants in freshwater crustaceans. In the present study, metabolites of biocides and pharmaceuticals formed in Gammarus pulex and Daphnia magna were identified using liquid chromatography high resolution mass spectrometry. Different confidence levels were assigned to the identification of metabolites without reference standards using a framework based on the background evidence used for structure elucidation. Twenty five metabolites were tentatively identified for irgarol, terbutryn, tramadol, and venlafaxine in G. pulex (21 via oxidation and 4 via conjugation reactions) and 11 metabolites in D. magna (7 via oxidation and 4 via conjugation reactions), while no evidence of metabolites for clarithromycin and valsartan was found. Of the 360 metabolites predicted for the four parent compounds using pathway prediction systems and expert knowledge, 23 products were true positives, while 2 identified metabolites were unexpected products. Observed oxidative reactions included N-, O-demethylation, hydroxylation, and N-oxidation. Glutathione conjugation of selected biocides followed by subsequent reactions forming cysteine conjugates was described for the first time in freshwater invertebrates.

Concepts: Scientific method, Mass spectrometry, Future, Analytical chemistry, Glutathione, Bioremediation, Branchiopoda, Freshwater crustaceans

26

The recent explosion of data linking drugs, targets, and pathways with safety events has promoted the development of integrative systems approaches to large scale predictive drug safety. The added value of such approaches is that, beyond mere chemical fragments, they have the ability to provide mechanistic insights for a large and diverse number of safety events in a statistically-sound non-supervised manner, based on the interaction with cytochromes P450 or additional off-target proteins and the interference with one or more biological pathways. Systems toxicology emerges as the new paradigm in preclinical drug discovery to provide researchers with a broader perspective on the potential safety liabilities of bioactive small molecules much earlier in the optimization process and with higher confidence than just structural alerts. The field is mature enough to start considering trial implementations for regulatory purposes.

Concepts: Scientific method, Protein, Pharmacology, Drug, Value added, Cytochrome P450, Drugs, Field Island