Discover the most talked about and latest scientific content & concepts.

Journal: Cerebral cortex (New York, N.Y. : 1991)


Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and perceptual responses to whole-body yaw-plane step rotations were: (1) Briefer and (2) uncorrelated (controls' reflex and perception were correlated). Voxel-based morphometry showed a selective gray matter (GM) reduction in dancers' vestibular cerebellum correlating with ballet experience. Dancers' vestibular cerebellar GM density reduction was related to shorter perceptual responses (i.e. positively correlated) but longer VOR duration (negatively correlated). Contrastingly, controls' vestibular cerebellar GM density negatively correlated with perception and VOR. Diffusion-tensor imaging showed that cerebral cortex white matter (WM) microstructure correlated with vestibular perception but only in controls. In summary, dancers display vestibular perceptuo-reflex dissociation with the neuronatomical correlate localized to the vestibular cerebellum. Controls' robust vestibular perception correlated with a cortical WM network conspicuously absent in dancers. Since primary vestibular afferents synapse in the vestibular cerebellum, we speculate that a cerebellar gating of perceptual signals to cortical regions mediates the training-related attenuation of vestibular perception and perceptuo-reflex uncoupling.

Concepts: Neuron, Neuroanatomy, Brain, Human brain, Cerebral cortex, White matter, Cerebellum, Sense


A growing body of evidence shows that ongoing oscillations in auditory cortex modulate their phase to match the rhythm of temporally regular acoustic stimuli, increasing sensitivity to relevant environmental cues and improving detection accuracy. In the current study, we test the hypothesis that nonsensory information provided by linguistic content enhances phase-locked responses to intelligible speech in the human brain. Sixteen adults listened to meaningful sentences while we recorded neural activity using magnetoencephalography. Stimuli were processed using a noise-vocoding technique to vary intelligibility while keeping the temporal acoustic envelope consistent. We show that the acoustic envelopes of sentences contain most power between 4 and 7 Hz and that it is in this frequency band that phase locking between neural activity and envelopes is strongest. Bilateral oscillatory neural activity phase-locked to unintelligible speech, but this cerebro-acoustic phase locking was enhanced when speech was intelligible. This enhanced phase locking was left lateralized and localized to left temporal cortex. Together, our results demonstrate that entrainment to connected speech does not only depend on acoustic characteristics, but is also affected by listeners' ability to extract linguistic information. This suggests a biological framework for speech comprehension in which acoustic and linguistic cues reciprocally aid in stimulus prediction.

Concepts: Neuron, Brain, Human brain, Cerebral cortex, Temporal lobe, Cerebrum, Primary auditory cortex, Wernicke's area


Unlike most languages that are written using a single script, Japanese uses multiple scripts including morphographic Kanji and syllabographic Hiragana and Katakana. Here, we used functional magnetic resonance imaging with dynamic causal modeling to investigate competing theories regarding the neural processing of Kanji and Hiragana during a visual lexical decision task. First, a bilateral model investigated interhemispheric connectivity between ventral occipito-temporal (vOT) cortex and Broca’s area (“pars opercularis”). We found that Kanji significantly increased the connection strength from right-to-left vOT. This is interpreted in terms of increased right vOT activity for visually complex Kanji being integrated into the left (i.e. language dominant) hemisphere. Secondly, we used a unilateral left hemisphere model to test whether Kanji and Hiragana rely preferentially on ventral and dorsal paths, respectively, that is, they have different intrahemispheric functional connectivity profiles. Consistent with this hypothesis, we found that Kanji increased connectivity within the ventral path (V1 ↔ vOT ↔ Broca’s area), and that Hiragana increased connectivity within the dorsal path (V1 ↔ supramarginal gyrus ↔ Broca’s area). Overall, the results illustrate how the differential processing demands of Kanji and Hiragana influence both inter- and intrahemispheric interactions.

Concepts: Brain, Magnetic resonance imaging, Cerebral hemisphere, Kanji, Japanese writing system, Japanese language, Katakana, Hiragana


Cognitive models claim that spoken words are recognized by an optimally efficient sequential analysis process. Evidence for this is the finding that nonwords are recognized as soon as they deviate from all real words (Marslen-Wilson 1984), reflecting continuous evaluation of speech inputs against lexical representations. Here, we investigate the brain mechanisms supporting this core aspect of word recognition and examine the processes of competition and selection among multiple word candidates. Based on new behavioral support for optimal efficiency in lexical access from speech, a functional magnetic resonance imaging study showed that words with later nonword points generated increased activation in the left superior and middle temporal gyrus (Brodmann area [BA] 21/22), implicating these regions in dynamic sound-meaning mapping. We investigated competition and selection by manipulating the number of initially activated word candidates (competition) and their later drop-out rate (selection). Increased lexical competition enhanced activity in bilateral ventral inferior frontal gyrus (BA 47/45), while increased lexical selection demands activated bilateral dorsal inferior frontal gyrus (BA 44/45). These findings indicate functional differentiation of the fronto-temporal systems for processing spoken language, with left middle temporal gyrus (MTG) and superior temporal gyrus (STG) involved in mapping sounds to meaning, bilateral ventral inferior frontal gyrus (IFG) engaged in less constrained early competition processing, and bilateral dorsal IFG engaged in later, more fine-grained selection processes.

Concepts: Brain, Magnetic resonance imaging, Cerebrum, Superior temporal gyrus, Language, Word, Inferior frontal gyrus, Lexeme


Sex differences in the human brain are of interest for many reasons: for example, there are sex differences in the observed prevalence of psychiatric disorders and in some psychological traits that brain differences might help to explain. We report the largest single-sample study of structural and functional sex differences in the human brain (2750 female, 2466 male participants; mean age 61.7 years, range 44-77 years). Males had higher raw volumes, raw surface areas, and white matter fractional anisotropy; females had higher raw cortical thickness and higher white matter tract complexity. There was considerable distributional overlap between the sexes. Subregional differences were not fully attributable to differences in total volume, total surface area, mean cortical thickness, or height. There was generally greater male variance across the raw structural measures. Functional connectome organization showed stronger connectivity for males in unimodal sensorimotor cortices, and stronger connectivity for females in the default mode network. This large-scale study provides a foundation for attempts to understand the causes and consequences of sex differences in adult brain structure and function.


Human brain maturation is characterized by the prolonged development of structural and functional properties of large-scale networks that extends into adulthood. However, it is not clearly understood which features change and which remain stable over time. Here, we examined structural connectivity based on diffusion tensor imaging (DTI) in 121 participants between 4 and 40 years of age. DTI data were analyzed for small-world parameters, modularity, and the number of fiber tracts at the level of streamlines. First, our findings showed that the number of fiber tracts, small-world topology, and modular organization remained largely stable despite a substantial overall decrease in the number of streamlines with age. Second, this decrease mainly affected fiber tracts that had a large number of streamlines, were short, within modules and within hemispheres; such connections were affected significantly more often than would be expected given their number of occurrences in the network. Third, streamline loss occurred earlier in females than in males. In summary, our findings suggest that core properties of structural brain connectivity, such as the small-world and modular organization, remain stable during brain maturation by focusing streamline loss to specific types of fiber tracts.

Concepts: Nervous system, Male, Female, Developmental biology, Human brain, Magnetic resonance imaging, Imaging, Tensors


Lack of physical engagement, productivity, and initiative-so-called “behavioral apathy”-is a common problem with significant impact, both personal and economic. Here, we investigate whether there might be a biological basis to such lack of motivation using a new effort and reward-based decision-making paradigm, combined with functional and diffusion-weighted imaging. We hypothesized that behavioral apathy in otherwise healthy people might be associated with differences in brain systems underlying either motivation to act (specifically in effort and reward-based decision-making) or in action processing (transformation of an intention into action). The results demonstrate that behavioral apathy is associated with increased effort sensitivity as well as greater recruitment of neural systems involved in action anticipation: supplementary motor area (SMA) and cingulate motor zones. In addition, decreased structural and functional connectivity between anterior cingulate cortex (ACC) and SMA were associated with increased behavioral apathy. These findings reveal that effort sensitivity and translation of intentions into actions might make a critical contribution to behavioral apathy. We propose a mechanism whereby inefficient communication between ACC and SMA might lead to increased physiological cost-and greater effort sensitivity-for action initiation in more apathetic people.

Concepts: Neuroanatomy, Brain, Cerebral cortex, Cerebrum, Premotor cortex, Brodmann area 24, Anterior cingulate cortex, Cingulate cortex


Humans express laughter differently depending on the context: polite titters of agreement are very different from explosions of mirth. Using functional MRI, we explored the neural responses during passive listening to authentic amusement laughter and controlled, voluntary laughter. We found greater activity in anterior medial prefrontal cortex (amPFC) to the deliberate, Emitted Laughs, suggesting an obligatory attempt to determine others' mental states when laughter is perceived as less genuine. In contrast, passive perception of authentic Evoked Laughs was associated with greater activity in bilateral superior temporal gyri. An individual differences analysis found that greater accuracy on a post hoc test of authenticity judgments of laughter predicted the magnitude of passive listening responses to laughter in amPFC, as well as several regions in sensorimotor cortex (in line with simulation accounts of emotion perception). These medial prefrontal and sensorimotor sites showed enhanced positive connectivity with cortical and subcortical regions during listening to involuntary laughter, indicating a complex set of interacting systems supporting the automatic emotional evaluation of heard vocalizations.

Concepts: Psychology, Brain, Cerebral cortex, Cerebrum, Limbic system, Frontal lobe, Premotor cortex, Laughter


A fundamental hypothesis in neuroscience proposes that underlying cellular architecture (cytoarchitecture) contributes to the functionality of a brain area. However, this hypothesis has not been tested in human ventral temporal cortex (VTC) that contains domain-specific regions causally involved in perception. To fill this gap in knowledge, we used cortex-based alignment to register functional regions from living participants to cytoarchitectonic areas in ex vivo brains. This novel approach reveals 3 findings. First, there is a consistent relationship between domain-specific regions and cytoarchitectonic areas: each functional region is largely restricted to 1 cytoarchitectonic area. Second, extracting cytoarchitectonic profiles from face- and place-selective regions after back-projecting each region to 20-μm thick histological sections indicates that cytoarchitectonic properties distinguish these regions from each other. Third, some cytoarchitectonic areas contain more than 1 domain-specific region. For example, face-, body-, and character-selective regions are located within the same cytoarchitectonic area. We summarize these findings with a parsimonious hypothesis incorporating how cellular properties may contribute to functional specialization in human VTC. Specifically, we link computational principles to correlated axes of functional and cytoarchitectonic segregation in human VTC, in which parallel processing across domains occurs along a lateral-medial axis while transformations of information within domain occur along an anterior-posterior axis.

Concepts: Brain, Human brain, Cerebral cortex, Temporal lobe, Cerebrum, Hippocampus, Visual perception, Parallel computing


Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF) transgender patients before hormone therapy as compared with 25 female and 25 male healthy controls. Graph theoretical analysis of whole-brain probabilistic tractography networks (adjusted for differences in intracranial volume) showed decreased hemispheric connectivity ratios of subcortical/limbic areas for both transgender groups. Subsequent analysis revealed that this finding was driven by increased interhemispheric lobar connectivity weights (LCWs) in MtF transsexuals and decreased intrahemispheric LCWs in FtM patients. This was further reflected on a regional level, where the MtF group showed mostly increased local efficiencies and FtM patients decreased values. Importantly, these parameters separated each patient group from the remaining subjects for the majority of significant findings. This work complements previously established regional alterations with important findings of structural connectivity. Specifically, our data suggest that network parameters may reflect unique characteristics of transgender patients, whereas local physiological aspects have been shown to represent the transition from the biological sex to the actual gender identity.

Concepts: Male, Female, Gender, Sex, Transgender, Graph, Gender identity disorder, Transsexualism