Discover the most talked about and latest scientific content & concepts.

Journal: Cell biology international


To examine cytokine production in response to RSV infection, we assessed the levels of 29 cytokines released from RSV-infected human foetal lung fibroblasts. We also examined the relationships between the effects of fluticasone propionate and various signalling pathways in the cells. Twenty-four hours after infection (1MOI), RSV-infected cells released cytokines, for example proinflammatory cytokines (IL-1β, IL-6 and TNF-α), anti-inflammatory (IL-1ra), Th1 (IFN-γ, IFN-λ1a, IL-2 and IL-12), Th2 (IL-4, IL-5, IL-10 and IL-13), granulopoiesis-inducing (G-CSF and GM-CSF), eosinophil recruitment-inducing (eotaxin and RANTES) and neutrophil recruitment-inducing cytokines (IL-8, IP-10, MCP-1 and MIP-1α). Aberrant release of most was significantly suppressed by fluticasone propionate. Twelve hours after RSV infection, increased phosphorylation of Akt, p38 MAPK, ERK1/2 and IκB-α was noted. Fluticasone propionate suppressed the phosphorylation of Akt, p38 MAPK, and ERK1/2, but not IκB-α, in virus-infected cells. TLR-4 expression was unchanged in control and RSV-infected cells, and TLR-3 and RIG-I expression was not detected. The results indicate that RSV infection induces aberrant production and release of certain cytokines through these signalling pathways in human lung fibroblasts. Overproduction and imbalance of these cytokines may be associated with the pathophysiology of RSV-induced excessive and allergic inflammation.

Concepts: Immune system, Inflammation, Cytokine, Signal transduction, Asthma, Cytokines, Interleukin, Chemokine


MicroRNA-455 (miRNA-455), which is downregulated in human cancer, potently mediates the multiple steps of carcinogenesis. However, the role of miR-455 in non-small cell lung cancer (NSCLC) carcinogenesis remains unclear. In present study, we determined the mature miRNA-455 expression in NSCLC tissues and cells by real-time PCR. Follow-up studies examined the effects of a miR-455 mimic (gain of function) on cell proliferation, migration and invasion. Our data indicate that miR-455 was significantly down-regulated in NSCLC cell lines and tissues. In functional assays, overexpression of miR-455 suppressed the proliferation, migration and invasion of NSCLC cell lines. Data from reporter assays showed that miR-455 directly binds to 3'UTR of ZEB1 and suppresses the endogenous level of ZEB1 protein expression. Furthermore, overexpression of ZEB1 reverses miR-455-suppressed malignant phenotype of NSCLC cells. Moreover, we found that upregulation of ZEB1 expression is inversely associated with miR-455 expression in NSCLC tissues. Taken together, miR-455 as an anti-oncogene in non-small cell lung cancer through up-regulation of ZEB1 and serve as a potential therapeutic target in NSCLC.

Concepts: DNA, Gene, Gene expression, Cancer, Evolution, Lung cancer, Non-small cell lung carcinoma, DNA replication


Parkinson’s disease (PD), the second-most prevalent neurodegenerative disease, is primarily characterized by neurodegeneration in the substantia nigra pars compacta, resulting in motor impairment. Loss-of-function mutations in parkin are the major cause of the early-onset familial form of the disease. Although rodents deficient in parkin (parkin(-/-)) have some dopaminergic system dysfunction associated with central oxidative stress and energy metabolism deficiencies, these animals only display nigrostriatal pathway degeneration under inflammatory conditions. This study investigated the impact of the inflammatory stimulus induced by lypopolisaccharide (LPS) on tetrahydrobiopterin (BH4) synthesizing enzymes (de novo and salvage pathways), since this cofactor is essential for dopamine synthesis. The mitochondrial content and architecture was investigated in the striatum of LPS-exposed parkin(-/-) mice. As expected, the LPS (0.33 mg / kg; i.p.) challenge compromised spontaneous locomotion and social interaction with juvenile parkin(-/-) and WT mice. Moreover, the genotype impacted the kinetics of the investigation of the juvenile. The inflammatory scenario did not induce apparent changes in mitochondrial ultrastructure; however, it increased the quantity of mitochondria, which were of smaller size, and provoked the perinuclear distribution of the organelle. Furthermore, the BH4 de novo biosynthetic pathway failed to be up-regulated in the LPS challenge, a well-known stimulus for its activation. The LPS treatment increased sepiapterin reductase (SPR) expression, suggesting compensation by the salvage pathway. This might indicate that dopamine synthesis is compromised in parkin(-/-) mice under inflammatory conditions. Finally, this scenario impaired the striatal expression of the transcription factor BDNF, possibly favoring cell death.

Concepts: Genetics, Metabolism, Adenosine triphosphate, Oxidative phosphorylation, Parkinson's disease, Substantia nigra, Striatum, Dopamine


MicroRNAs have been known to function as important regulators in the vascular system, with various physiopathological effects such as vascular remodeling and hypertension modulation. We aimed to explore whether microRNA-150 (miR-150) regulates endothelial cell function and vascular remodeling in acute coronary syndrome (ACS), and the involvement of PTX3 and NF-κB signaling pathway. Ten normal mice and sixty ApoE-/- mice were chosen, and their coronary artery tissues and endothelial cells were extracted. ApoE-/- mice were injected with a series of inhibitors or mimics for miR-150, or siRNA against PTX3. The miR-150 expression, NF-κB1, RELA, and PTX3 mRNA expressions were assessed by reverse transcription quantitative polymerase chain reaction, and pentraxin-3, p-P50, and p-P65 protein expression by western blot analysis. Cell viability and migration were assessed by MTT assay and scratch test. Matrigel tube formation assay was employed to determine vascular remodeling of endothelial cells. The dual-luciferase reporter assay verified that PTX3 was a target of miR-150. Mice with ACS presented with decreased miR-150 but increased PTX3. It was observed that the miR-150 mimics and siRNA against PTX3 reduced levels of PTX3, NF-κB1 and RELA in mice, and the miR-150 inhibitor reversed the tendency. The in vitro cell experimentation proved that miR-150 might facilitate endothelial cell proliferation, migration, and restrain vascular remodeling via inhibiting PTX3 expression. On the basis of the results of this study, it was hypothesized that miR-150 could possibly maintain endothelial cell function and suppress vascular remodeling by inhibiting PTX3 through the NF-κB signaling pathway in mice with ACS.


Colorectal cancer is one of the global causes of cancer deaths. Cancer stem cells (CSCs) inside the tumour niche responsible for metastasis and relapses, and hence need to be targeted for cancer therapeutics. Although dietary fibre and lifestyle changes have been recommended as measures for colorectal cancer prevention, no such recommendations are available for using water soluble vitamins as prophylaxis measure for colorectal cancers. High dose of Vitamin C has been proven to selectively kill colon cancer cells having BRAF and KRAS mutations by inducing oxidative stress. In this study, we show for the first time the opposing effects of the low and high dose of Vitamin C and vitamin B3 on colon CSCs isolated from HT- 29 and HCT-15 colorectal carcinoma cell lines. At small doses, both of these vitamins exerted a cell proliferative effect only on CSCs, while there was no change in the proliferation status of non-stem cancer cells and wild-type (WT) populations. On the other hand, the death effects induced by high doses of Vitamin C and B3 were of the order of 50-60% and ∼30% on CSCs from HT-29 and HCT15 respectively. Interestingly, the control fibroblast cell line (NIH3T3) was highly refractory all the tested concentrations of Vitamin C and B3, except for the highest dose- 10,000 µg of Vitamin C that induced only 15% of cell death. Hence, these results indicate the future scope of use of therapeutic doses of Vitamin C and B3 especially in patients with advanced colorectal cancer.

Concepts: Cancer, Cell biology, Vitamin, Colorectal cancer, Hereditary nonpolyposis colorectal cancer, Ulcerative colitis, Colon, Constipation


Sutherlandia frutescens is a medicinal plant, traditionally used to treat various types of human diseases, including cancer. Previous studies of several botanicals link suppression of prostate cancer growth with inhibition of the Gli/hedgehog (Gli/Hh) signaling pathway. Here we hypothesized the anti-cancer effect of S. frutescens was linked to its inhibition of the Gli/Hh signaling in prostate cancer. We found a dose- and time-dependent growth inhibition in human prostate cancer cells, PC3 and LNCaP, and mouse prostate cancer cell, TRAMP-C2, treated with S. frutescens methanol extract (SLE). We also observed a dose-dependent inhibition of the Gli-reporter activity in Shh Light II and TRAMP-C2QGli cells treated with SLE. In addition, SLE can inhibit Gli/Hh signaling by blocking Gli1 and Ptched1 gene expression in the presence of a Gli/Hh signaling agonist (SAG). A diet supplemented with S. frutescens suppressed the formation of poorly differentiated carcinoma in prostates of TRAMP mice. Finally, we found Sutherlandioside D was the most potent compound in the crude extract that could suppress Gli-reporter in Shh Light II cells. Together, this suggests that the S. frutescens extract may exert anti-cancer effect by targeting Gli/Hh signaling, and Sutherlandioside D is one of the active compounds.

Concepts: Gene, Gene expression, Cancer, Disease, Metastasis, Obesity, Prostate cancer, Radiation therapy


MicroRNA-143-3p (miR-143-3p) is involved in the initiation of inflammatory response and the progression of cardiovascular diseases. Myocardial hypertrophy is a common symptom in numerous cardiovascular diseases. In the current study, we attempted to demonstrate the role of miR-143-3p in the development of myocardial hypertrophy by focusing on its association with inflammation. Myocardial hypertrophy was induced by transverse aortic constriction (TAC) method in vivo and by H2 O2 administration in vitro. The expression status of miR-143-3p and downstream effectors were detected in animal heart tissues and H9c2 cells. Furthermore, the effect of miR-143-3p inhibition on H2 O2 -induced changes in ERK5/PPARδ/NF-κB axis was assessed. TAC induced oxidative stress and inflammation in rat heart tissues, which was associated with the increased expressions of miR-143-3p and p-ERK5. However, the up-regulated expression of miR-143-3p had no effect on the expression of ERK5, which was a direct target of miR-143-3p. The results of in vitro assays showed that H2 O2 administration increased the levels of miR-143-3p and p-EKR5 and induced the activation of NF-κB pathway. After the inhibition of miR-143-3p, the activation of EKR5 and NF-κB pathway was suppressed, whereas the expression of PPARδ was up-regulated. The current study demonstrated that miR-143-3p is crucial to the initiation of inflammatory response induced by myocardial hypertrophy.. The activation of ERK5 following miR-143-3p up-regulation appears to be a complementary response to induce the subsequent anti-inflammatory signaling transduction, which needed further exploration.


Colorectal cancer (CRC) is the third most common type of cancer, and its incidence and mortality are markedly increasing worldwide. Oncogenic mutations of KRAS occur in up to 40% of CRC cases and pose a great challenge in the treatment of the disease. Quercetin is a dietary flavonoid that exerts anti-oxidant, anti-inflammatory and anti-cancer properties. The current study investigated the anti-proliferative effect of quercetin on CRC cells harboring mutant or wild-type KRAS. The effect of quercetin on cell viability was investigated by MTT and colony formation assays, and apoptosis was detected using flow cytometry by labeling cells with Annexin V-FITC. The expression of the relevant proteins was examined by western blotting. The data revealed that KRAS-mutant cells were more sensitive to quercetin-induced apoptosis than wild-type cells. Caspase activation was involved in quercetin-induced apoptosis. In addition, quercetin selectively activated the c-Jun N-terminal kinase (JNK) pathway in KRAS-mutant cells, while inhibition of phospho-JNK by SP600125 blocked quercetin-induced apoptosis. The results of the present study suggest that treatment with quercetin, a common flavonoid in plants, is potentially a useful strategy for the treatment of CRCs carrying KRAS mutations.


Ethanol alters motricity, learning, cognition and cellular metabolism in the cerebellum. The combination of ethanol with caffeine by consuming “energy drinks” is becoming increasingly popular among young people. We analyzed the use of ethanol and caffeine on apoptosis in the cerebellum of UChB rats. The adult rats were divided into three groups (n = 14/group): UChB group: rats fed with 1:10 (v/v) ethanol ad libitum (free choice for water or ethanol) drinking from > 1.9 mL of ethanol/Kg body weight/day, Control group and UChB/caffeine group (free choice for water or ethanol + caffeine 300 mg/L). The treatments occurred from day 100 till day 150, totalizing 50 days of ethanol/caffeine ingestion. Cerebellar sections were subjected to immunohistochemistry and gene expression for Real Time-PCR (RT-PCR) for Caspase-3, XIAP and insulin-like growth factor 1-receptor (IGF-1R). The results showed a significant increase in the gene expression of Caspase-3 and XIAP in UChB group. On the other hand, the animals of the UChB/caffeine group showed similar results to the Controls. Regarding IGFR-1, there was greater expression in the UChB groups with strong labeling in Purkinje cells. Ethanol produces neuronal and glial neurodegeneration on the cerebellum of UChB rats. The simultaneous ingestion of ethanol and caffeine reversed the ethanol damages acting caffeine with a neuroprotective effect.


Angiogenesis, the process of new blood vessel formation from pre-existing vessels, is essential for growth and development. Development of drugs that can accelerate or decelerate angiogenesis in the context of various diseases requires appropriate preclinical screening. As angiogenesis involves complex cellular and molecular processes, in vivo studies are superior to in vitro investigations. Conventional in vitro, in vivo, and ex ovo models of angiogenesis are time consuming and tedious, and require sophisticated infrastructure for embryo culture. In the present study, we established an in ovo chick embryo Yolk Sac Membrane (YSM) assay for angiogenesis and tested the angiogenic potential of arginine, conditioned medium (CM) from human adipose tissue and placenta-derived mesenchymal stem cells (ADMSCs-CM and PDMSCs-CM), avastin and vitamin C. The obtained results were confirmed with the routinely employed chick embryo Chorioallantoic Membrane (CAM) assay. Both assays revealed the pro-angiogenic nature of arginine, ADMSCs-CM, and PDMSCs-CM, and the anti-angiogenic effect of avastin and vitamin C. This novel in ovo YSM model is simple, reproducible and highly economic in terms of the time frame and cost incurred. The proposed model is thus a suitable substitute to the CAM model for pilot screening of potential angiogenic and anti-angiogenic agents.