SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Cancers

5

Cancer is a multifaceted condition, in which a senescent cell begins dividing in an irregular manner due to various factors such as DNA damage, growth factors and inflammation. Inflammation is not typically discussed as carcinogenic; however, a significant percentage of cancers arise from chronic microbial infections and damage brought on by chronic inflammation. A hallmark cancer-inducing microbe isHelicobacter pyloriand its causation of peptic ulcers and potentially gastric cancer. This review discusses the recent developments in understanding microbes in health and disease and their potential role in the progression of cancer. To date, microbes can be linked to almost every cancer, including colon, pancreatic, gastric, and even prostate. We discuss the known mechanisms by which these microbes can induce cancer growth and development and how inflammatory cells may contribute to cancer progression. We also discuss new treatments that target the chronic inflammatory conditions and their associated cancers, and the impact microbes have on treatment success. Finally, we examine common dietary misconceptions in relation to microbes and cancer and how to avoid getting caught up in the misinterpretation and over inflation of the results.

Concepts: Infection, Infectious disease, Immune system, Disease, Inflammation, Senescence, Bacteria, Cancer

5

Urothelial cancer of the bladder, renal pelvis, ureter, and other urinary organs is the fifth most common cancer in the United States, and systemic platinum-based chemotherapy remains the standard of care for first-line treatment of advanced/metastatic urothelial carcinoma (UC). Until recently, there were very limited options for patients who are refractory to chemotherapy, or do not tolerate chemotherapy due to toxicities and overall outcomes have remained very poor. While the role of immunotherapy was first established in non-muscle invasive bladder cancer in the 1970s, no systemic immunotherapy was approved for advanced disease until the recent approval of a programmed death ligand-1 (PD-L1) inhibitor, atezolizumab, in patients with advanced/metastatic UC who have progressed on platinum-containing regimens. This represents a significant milestone in this disease after a void of over 30 years. In addition to atezolizumab, a variety of checkpoint inhibitors have shown a significant activity in advanced/metastatic urothelial carcinoma and are expected to gain Food and Drug Administration (FDA) approval in the near future. The introduction of novel immunotherapy agents has led to rapid changes in the field of urothelial carcinoma. Numerous checkpoint inhibitors are being tested alone or in combination in the first and subsequent-line therapies of metastatic disease, as well as neoadjuvant and adjuvant settings. They are also being studied in combination with radiation therapy and for non-muscle invasive bladder cancer refractory to BCG. Furthermore, immunotherapy is being utilized for those ineligible for firstline platinum-based chemotherapy. This review outlines the novel immunotherapy agents which have either been approved, or are currently being investigated in clinical trials in UC.

Concepts: Chemotherapy, Urine, Bladder cancer, Urinary system, Urinary bladder, Ureter, Kidney, Cancer

4

Bladder cancer is one of the most prevalent cancers worldwide. Unfortunately, there have been few advances in its clinical management due to a poor understanding of the correlations between its molecular and clinical features. Mounting evidence suggests that bladder cancer comprises a group of molecularly heterogeneous diseases that undergo a variety of clinical courses and possess diverse therapeutic responses. Owing to the close association between its molecular subtypes and clinicopathological features, specific therapeutic strategies have recently been suggested. This review summarizes the current understanding of the molecular pathology of bladder cancer, including its molecular biomarkers/pathways and molecular subtypes that have been newly identified using high-throughput technologies. It also discusses advances in our understanding of personalized treatments for specific molecular subtypes.

Concepts: Medicine, Infectious disease, Biopsy, The Canon of Medicine, Pathology, Disease, Cancer, Epidemiology

4

Integrins are transmembrane receptors that are central to the biology of many human pathologies. Classically mediating cell-extracellular matrix and cell-cell interaction, and with an emerging role as local activators of TGFβ, they influence cancer, fibrosis, thrombosis and inflammation. Their ligand binding and some regulatory sites are extracellular and sensitive to pharmacological intervention, as proven by the clinical success of seven drugs targeting them. The six drugs on the market in 2016 generated revenues of some US$3.5 billion, mainly from inhibitors of α4-series integrins. In this review we examine the current developments in integrin therapeutics, especially in cancer, and comment on the health economic implications of these developments.

Concepts: Protein, Cancer, The Canon of Medicine, Pharmacology, Extracellular matrix, Pathology, Cell signaling, Medicine

3

The incidence of acute myeloid leukemia (AML) increases with age, but the outcomes for older adults with AML are poor due to underlying tumor biology, poor tolerance to aggressive treatment, and the physiologic changes of aging. Because of the underlying heterogeneity in health status, treatment decisions are difficult in this population. A geriatric assessment (GA) refers to the use of various validated tools to assess domains that are important in older adults including physical function, cognition, comorbidities, polypharmacy, social support, and nutritional status. In older patients with cancer, a GA can guide treatment decision-making, predict treatment toxicity, and guide supportive care interventions. Compared to solids tumors, there is a relative lack of studies evaluating the use of a GA in older patients with AML. In this review, we will discuss the principles, common domains, feasibility, and benefits of GA, with a focus on older patients with AML that includes practical applications for clinical management.

3

Hematopoietic stem cells (HSCs) maintain an organism’s immune system for a lifetime, and derangements in HSC proliferation and differentiation result in hematologic malignancies. Chronic inflammation plays a contributory if not causal role in HSC dysfunction. Inflammation induces HSC exhaustion, which promotes the emergence of mutant clones that may be resistant to an inflammatory microenvironment; this likely promotes the onset of a myeloid hematologic malignancy. Inflammatory cytokines are characteristically high in patients with myeloid malignancies and are linked to disease initiation, symptom burden, disease progression, and worsened prognostic survival. This review will cover our current understanding of the role of inflammation in the initiation, progression, and complications of myeloid hematologic malignancies, drawing from clinical studies as well as murine models. We will also highlight inflammation as a therapeutic target in hematologic malignancies.

Concepts: Infection, Medical terms, Inflammation, Bone marrow, Medicine, Hematological malignancy, Cancer, Immune system

3

The resident microbiome plays a key role in exposure of the upper gastrointestinal (GI) tract mucosa to acetaldehyde (ACH), a carcinogenic metabolite of ethanol. Poor oral health is a significant risk factor for oral and esophageal carcinogenesis and is characterized by a dysbiotic microbiome. Dysbiosis leads to increased growth of opportunistic pathogens (such as Candida yeasts) and may cause an up to 100% increase in the local ACH production, which is further modified by organ-specific expression and gene polymorphisms of ethanol-metabolizing and ACH-metabolizing enzymes. A point mutation in the aldehyde dehydrogenase 2 gene has randomized millions of alcohol consumers to markedly increased local ACH exposure via saliva and gastric juice, which is associated with a manifold risk for upper GI tract cancers. This human cancer model proves conclusively the causal relationship between ACH and upper GI tract carcinogenesis and provides novel possibilities for the quantitative assessment of ACH carcinogenicity in the human oropharynx. ACH formed from ethanol present in “non-alcoholic” beverages, fermented food, or added during food preparation forms a significant epidemiologic bias in cancer epidemiology. The same also concerns “free” ACH present in mutagenic concentrations in multiple beverages and foodstuffs. Local exposure to ACH is cumulative and can be reduced markedly both at the population and individual level. At best, a person would never consume tobacco, alcohol, or both. However, even smoking cessation and moderation of alcohol consumption are associated with a marked decrease in local ACH exposure and cancer risk, especially among established risk groups.

Concepts: Ethanol, Human gastrointestinal tract, Digestive system, Alcoholic beverage, Digestion, Alcohol, Yeast, Cancer

3

Heavy alcohol consumption has been associated with increased risk of several cancers, including cancer of the colon, rectum, female breast, oral cavity, pharynx, larynx, liver, and esophagus. It appears that alcohol exposure not only promotes carcinogenesis but also enhances the progression and aggressiveness of existing cancers. The molecular mechanisms underlying alcohol tumor promotion, however, remain unclear. Cancer stem cells (CSC), a subpopulation of cancer cells with self-renewal and differentiation capacity, play an important role in tumor initiation, progression, metastasis, recurrence, and therapy resistance. The recent research evidence suggests that alcohol increases the CSC population in cancers, which may underlie alcohol-induced tumor promotion. This review discusses the recent progress in the research of alcohol promotion of CSC and underlying cellular/molecular mechanisms. The review will further explore the therapeutic potential of CSC inhibition in treating alcohol-induced tumor promotion.

Concepts: Neoplasm, Cell division, Lung cancer, Metastasis, Colorectal cancer, Breast cancer, Cancer, Oncology

3

Pancreatic cancer (PC) is the third leading cause of adult cancer mortality in the United States. The poor prognosis for patients with PC is mainly due to its aggressive course, the limited efficacy of active systemic treatments, and a metastatic behavior, demonstrated throughout the evolution of the disease. On average, 80% of patients with PC are diagnosed with metastatic disease, and the half of those who undergo surgery and adjuvant therapy develop liver metastasis within two years. Metastatic dissemination is an early event in PC and is mainly attributed to an evolutionary biological process called epithelial-to-mesenchymal transition (EMT). This innate mechanism could have a dual role during embryonic growth and organ differentiation, and in cancer progression, cancer stem cell intravasation, and metastasis settlement. Many of the molecular pathways decisive in EMT progression have been already unraveled, but little is known about the causes behind the induction of this mechanism. EMT is one of the most distinctive and critical features of PC, occurring even in the very first stages of tumor development. This is known as pancreatic intraepithelial neoplasia (PanIN) and leads to early dissemination, drug resistance, and unfavorable prognosis and survival. The intention of this review is to shed new light on the critical role assumed by EMT during PC progression, with a particular focus on its role in PC resistance.

Concepts: Testicular cancer, Prostate cancer, Tumor, Breast cancer, Lung cancer, Metastasis, Oncology, Cancer

3

Nitric oxide (NO) produced by nitric oxide synthase (NOS) enzymes is a free radical molecule involved in a wide variety of normophysiologic and pathophysiologic processes. Included in the latter category are cancer promotion, progression, and resistance to therapeutic intervention. Animal tumor photodynamic therapy (PDT) studies several years ago revealed that endogenous NO can reduce PDT efficacy and that NOS inhibitors can alleviate this. Until relatively recently, little else was known about this anti-PDT effect of NO, including: (a) the underlying mechanisms; (b) type(s) of NOS involved; and © whether active NO was generated in vascular cells, tumor cells, or both. In addressing these questions for various cancer cell lines exposed to PDT-like conditions, the author’s group has made several novel findings, including: (i) exogenous NO can scavenge lipid-derived free radicals arising from photostress, thereby protecting cells from membrane-damaging chain peroxidation; (ii) cancer cells can upregulate inducible NOS (iNOS) after a PDT-like challenge and the resulting NO can signal for resistance to photokilling; (iii) photostress-surviving cells with elevated iNOS/NO proliferate and migrate/invade more aggressively; and (iv) NO produced by photostress-targeted cells can induce greater aggressiveness in non-targeted bystander cells. In this article, the author briefly discusses these various means by which NO can interfere with PDT and how this may be mitigated by use of NOS inhibitors as PDT adjuvants.

Concepts: Gene expression, Neoplasm, DNA, Oncology, Radical, Senescence, Cancer, Nitric oxide