SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Cancers

158

Several molecular imaging modalities have been evaluated in the management of Merkel cell carcinoma (MCC), a rare and aggressive tumor with a high tendency to metastasize. Continuous progress in the field of molecular imaging might improve management in these patients. The authors review the current modalities and their impact on MCC in this brief review article.

Concepts: Cancer, The Current, Merkel cell cancer, Merkel cell

134

Triple-negative breast cancer (TNBC) is the most challenging subtype to treat due to the lack of estrogen receptor, progesterone receptor, and HER2 expression, which excludes the usage of directed targeted therapy against them. Promising therapeutic targets are the hepatocyte growth factor receptor (MET) and epidermal growth factor receptor (EGFR), which expression is frequently elevated in TNBC. Inhibitors of these receptors used as monotherapy are often ineffective. Due to that, we studied the efficacy of combined therapy targeting MET and EGFR simultaneously. Two TNBC cell lines were treated with lapatinib (a dual EGFR and HER2 inhibitor), foretinib (a MET inhibitor), or a combination of the two. After the inhibitors treatment, we verified the cell viability (XTT assay), distribution of the cell cycle phases, the activation of signaling pathways (Western blotting), distribution of invadopodia, fluorescent gelatin digestion (immunofluorescence), and the invasion capacity of cells. A combination of foretinib and lapatinib effectively reduced the viability of examined cells, led to G2/M arrest and reduction of pAKT. There was also a decreasein number of invadopodia formed by cells, their ability to digest gelatin and reduction of cells migration/invasion capacity. Therapy targeting of both EGFR and MET receptors was much more effective against tested cells than monotherapy. We selected a combination of drugs that could be successfully used against this breast cancer subtype.

131

Background: Oral cancer is one of the most prevalent cancers worldwide. Despite that the oral cavity is easily accessible for clinical examinations, oral cancers are often not promptly diagnosed. Furthermore, to date no effective biomarkers are available for oral cancer. Therefore, there is an urgent need to identify novel biomarkers able to improve both diagnostic and prognostic strategies. In this context, the development of innovative high-throughput technologies for molecular and epigenetics analyses has generated a huge amount of data that may be used for the identification of new cancer biomarkers. Methods: In the present study, GEO DataSets and TCGA miRNA profiling datasets were analyzed in order to identify miRNAs with diagnostic and prognostic significance. Furthermore, several computational approaches were adopted to establish the functional roles of these miRNAs. Results: The analysis of datasets allowed for the identification of 11 miRNAs with a potential diagnostic role for oral cancer. Additionally, eight miRNAs associated with patients' prognosis were also identified; six miRNAs predictive of patients' overall survival (OS) and one, hsa-miR-let.7i-3p, associated with tumor recurrence. Conclusion: The integrated analysis of different miRNA expression datasets allows for the identification of a set of miRNAs that, after validation, may be used for the early detection of oral cancers.

131

The question of whether anesthetic, analgesic or other perioperative intervention during cancer resection surgery might influence long-term oncologic outcomes has generated much attention over the past 13 years. A wealth of experimental and observational clinical data have been published, but the results of prospective, randomized clinical trials are awaited. The European Union supports a pan-European network of researchers, clinicians and industry partners engaged in this question (COST Action 15204: Euro-Periscope). In this narrative review, members of the Euro-Periscope network briefly summarize the current state of evidence pertaining to the potential effects of the most commonly deployed anesthetic and analgesic techniques and other non-surgical interventions during cancer resection surgery on tumor recurrence or metastasis.

30

Even though more than 350,000 men die from prostate cancer every year, broad-based screening for the disease remains a controversial topic. Guidelines demand that the only commonly accepted screening tool, prostate-specific antigen (PSA) testing, must be followed by prostate biopsy if results are elevated. Due to the procedure’s low positive predictive value (PPV), however, over 80% of biopsies are performed on healthy men or men with clinically insignificant cancer-prompting calls for new ways of vetting equivocal PSA readings prior to the procedure. Responding to the challenge, the present study investigated the diagnostic potential of tumour-associated circulating endothelial cells (tCECs), which have previously been described as a novel, blood-based biomarker for clinically significant cancers. Specifically, the objective was to determine the diagnostic accuracy of a tCEC-based blood test to detect clinically significant prostate cancer (defined as Gleason score ≥ 3 + 4) in high-risk patients. Performed in a blinded, prospective, single-centre set-up, it compared a novel tCEC index test with transrectal ultrasound-guided biopsy biopsy as a reference on a total of 170 patients and found that a tCEC add-on test will almost double the PPV of a standalone PSA test (32% vs. 17%; p = 0.0012), while retaining a negative predictive value above 90%.

23

Background. OT101 is a first-in-class RNA therapeutic designed to abrogate the immunosuppressive actions of transforming growth factor beta 2 (TGFβ2). Here, we report our post-hoc analysis of the single-agent activity of OT101 in adult patients with recurrent and/or refractory (R/R) high-grade gliomas. Methods. In a Phase 2 clinical trial (ClinicalTrials.gov, NCT00431561), OT101 was administered to 89 R/R high-grade glioma (HGG) (anaplastic astrocytoma/AA: 27; glioblastoma multiforme/GBM: 62) patients with an intratumoral catheter using a convection enhanced delivery (CED) system. Seventy-seven patients (efficacy population; GBM: 51; AA: 26) received at least the intended minimum number of four OT101 treatment cycles. Response determinations were based on central review of magnetic resonance imaging (MRI) scans according to the McDonald criteria. Standard statistical methods were applied for the analysis of data. Findings. Nineteen patients had a complete response (CR) or partial response (PR) following a slow but robust size reduction of their target lesions (median time for 90% reduction of the baseline tumor volume = 11.7 months, range: 4.9-57.7 months). The mean log reduction of the tumor volume was 2.2 ± 0.4 (median = 1.4: range: 0.4-4.5) logs. In addition, seven patients had a stable disease (SD) lasting ≥6 months. For the combined group of 26 AA/GBM patients with favorable responses, the median progression-free survival (PFS) of 1109 days and overall survival (OS) of 1280 days were significantly better than the median PFS (p < 0.00001) and OS (p < 0.00001) of the non-responders among the 89 patients or the 77-patient efficacy population. Conclusion. Intratumorally administered OT101 exhibits clinically meaningful single-agent activity and induces durable CR/PR/SD in R/R HGG patients.

19

Tumor mutational burden (TMB) has emerged as an important potential biomarker for prediction of response to immune-checkpoint inhibitors (ICIs), notably in non-small cell lung cancer (NSCLC). However, its in-house assessment in routine clinical practice is currently challenging and validation is urgently needed. We have analyzed sixty NSCLC and thirty-six melanoma patients with ICI treatment, using the FoundationOne test (FO) in addition to in-house testing using the Oncomine TML (OTML) panel and evaluated the durable clinical benefit (DCB), defined by >6 months without progressive disease. Comparison of TMB values obtained by both tests demonstrated a high correlation in NSCLC (R2 = 0.73) and melanoma (R2 = 0.94). The association of TMB with DCB was comparable between OTML (area-under the curve (AUC) = 0.67) and FO (AUC = 0.71) in NSCLC. Median TMB was higher in the DCB cohort and progression-free survival (PFS) was prolonged in patients with high TMB (OTML HR = 0.35; FO HR = 0.45). In contrast, we detected no differences in PFS and median TMB in our melanoma cohort. Combining TMB with PD-L1 and CD8-expression by immunohistochemistry improved the predictive value. We conclude that in our cohort both approaches are equally able to assess TMB and to predict DCB in NSCLC.

19

A majority of breast cancer specific deaths in women with ERα (+) tumors occur due to metastases that are resistant to endocrine therapy. There is a critical need for novel therapeutic approaches to resensitize recurrent ERα (+) tumors to endocrine therapies. The objective of this study was to elucidate mechanisms of improved effectiveness of combined targeting of ERα and the nuclear transport protein XPO1 in overcoming endocrine resistance. Selinexor (SEL), an XPO1 antagonist, has been evaluated in multiple late stage clinical trials in patients with relapsed and /or refractory hematological and solid tumor malignancies. Our transcriptomics analysis showed that 4-Hydroxytamoxifen (4-OHT), SEL alone or their combination induced differential Akt signaling- and metabolism-associated gene expression profiles. Western blot analysis in endocrine resistant cell lines and xenograft models validated differential Akt phosphorylation. Using the Seahorse metabolic profiler, we showed that ERα-XPO1 targeting changed the metabolic phenotype of TAM-resistant breast cancer cells from an energetic to a quiescent profile. This finding demonstrated that combined targeting of XPO1 and ERα rewired the metabolic pathways and shut down both glycolytic and mitochondrial pathways that would eventually lead to autophagy. Remodeling metabolic pathways to regenerate new vulnerabilities in endocrine resistant breast tumors is novel, and given the need for better strategies to improve therapy response in relapsed ERα (+) tumors, our findings show great promise for uncovering the role that ERα-XPO1 crosstalk plays in reducing cancer recurrences.

18

Elevated tissue inhibitor of metalloproteinase-1 (TIMP-1) is a negative prognosticator in non-small cell lung carcinoma NSCLC patients. This study sought to identify mechanisms whereby TIMP-1 impacts anticancer therapy. Using NSCLC cells and their TIMP-1 knockdown clones, we examined the chemoresistance against two chemotherapeutic agents, Gemcitabine and Cisplatin, as identified by increased apoptosis in the knockdown clones. A bead-based cytokine screening assay identified interleukin-6 (IL-6) as a key factor in chemoresistance. Exogenous human recombinant rhTIMP-1 or rhIL-6 resulted in reduced apoptosis. IL-6 expression was closely correlated with TIMP-1 kinetics and was upregulated by the addition of exogenous TIMP-1 while TIMP-1 neutralizing antibodies delayed IL-6 elevation. IL-6 production was regulated by TIMP-1, exerting its effect via activation of downstream signal transducer and activator of transcription 3 (STAT3) signaling. Both molecules and their documented transcription factors were upregulated and activated in chemoresistant NSCLC cells, confirming the roles of TIMP-1 and IL-6 in chemoresistance. To examine the role of these genes in patients, survival data from lung adenocarcinoma (LUAD) patients was curated from the cancer genome atlas (TCGA) database. Kaplan-Meier analysis found that individuals expressing low TIMP-1 and IL-6 have a higher survival rate and that the two-gene signature was more significant than the single-gene status. We define for the first time, a regulatory relationship between TIMP-1 and IL-6 in NSCLCs, suggesting that the TIMP-1/IL6 axis may be a valuable prognostic biomarker. Therapeutic interventions directed at this dual target may improve overall prognosis while negatively affecting the development of chemoresistance in NSCLC.

18

Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases, and for the most cancer-related deaths. The survival pathway of Akt, its downstream effectors, the mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (p70 S6K), and the Ras-extracellular signal-regulated kinase (Erk1/2) pathways are activated in cancer leading to cell survival and growth. Thus, approaches that inhibit these signaling molecules may prove useful in the fight against lung cancer. Exercise is associated with health benefits and a limited number of studies indicate that serum from physically active individuals inhibit mammary and prostate cancer cell growth. In this study, we examined the effects of post exercise serum on proliferation, survival, and signaling cascades of human NSCLC cells. Blood was collected from male subjects prior to, 5 min, 1 h, and 24 h after a single bout of high intensity interval exercise on a cycle ergometer. Exposure of NSCLC cells to post exercise serum resulted in the inhibition of cell proliferation and survival, as well as significant reduction of phosphorylated/activated Akt, mTOR, p70 S6K, and Erk1/2 levels compared to cells treated with serum taken pre-exercise. Our data suggest that post exercise serum has anti-cancer properties in lung cancer and deserves further systematic investigation in animal models.

Concepts: Protein, Cancer, Metastasis, Bacteria, Lung cancer, Non-small cell lung carcinoma, Cell division, Obesity