SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Briefings in bioinformatics

25

A wide variety of large-scale data have been produced in bioinformatics. In response, the need for efficient handling of biomedical big data has been partly met by parallel computing. However, the time demand of many bioinformatics programs still remains high for large-scale practical uses because of factors that hinder acceleration by parallelization. Recently, new generations of storage devices have emerged, such as NAND flash-based solid-state drives (SSDs), and with the renewed interest in near-data processing, they are increasingly becoming acceleration methods that can accompany parallel processing. In certain cases, a simple drop-in replacement of hard disk drives by SSDs results in dramatic speedup. Despite the various advantages and continuous cost reduction of SSDs, there has been little review of SSD-based profiling and performance exploration of important but time-consuming bioinformatics programs. For an informative review, we perform in-depth profiling and analysis of 23 key bioinformatics programs using multiple types of devices. Based on the insight we obtain from this research, we further discuss issues related to design and optimize bioinformatics algorithms and pipelines to fully exploit SSDs. The programs we profile cover traditional and emerging areas of importance, such as alignment, assembly, mapping, expression analysis, variant calling and metagenomics. We explain how acceleration by parallelization can be combined with SSDs for improved performance and also how using SSDs can expedite important bioinformatics pipelines, such as variant calling by the Genome Analysis Toolkit and transcriptome analysis using RNA sequencing. We hope that this review can provide useful directions and tips to accompany future bioinformatics algorithm design procedures that properly consider new generations of powerful storage devices.

Concepts: Algorithm, Speedup, Parallel computing, Solid-state drive, Parallel algorithm, Gustafson's law, Amdahl's law, Hard disk drive

24

Modern approaches to biomedical research and diagnostics targeted towards precision medicine are generating ‘big data’ across a range of high-throughput experimental and analytical platforms. Integrative analysis of this rich clinical, pathological, molecular and imaging data represents one of the greatest bottlenecks in biomarker discovery research in cancer and other diseases. Following on from the publication of our successful framework for multimodal data amalgamation and integrative analysis, Pathology Integromics in Cancer (PICan), this article will explore the essential elements of assembling an integromics framework from a more detailed perspective. PICan, built around a relational database storing curated multimodal data, is the research tool sitting at the heart of our interdisciplinary efforts to streamline biomarker discovery and validation. While recognizing that every institution has a unique set of priorities and challenges, we will use our experiences with PICan as a case study and starting point, rationalizing the design choices we made within the context of our local infrastructure and specific needs, but also highlighting alternative approaches that may better suit other programmes of research and discovery. Along the way, we stress that integromics is not just a set of tools, but rather a cohesive paradigm for how modern bioinformatics can be enhanced. Successful implementation of an integromics framework is a collaborative team effort that is built with an eye to the future and greatly accelerates the processes of biomarker discovery, validation and translation into clinical practice.

Concepts: Scientific method, Pathology, Academic publishing, Research, Medical research, Relational database, Research and development, Relational model

22

: Biological pathways are extensively used for the analysis of transcriptome data to characterize biological mechanisms underlying various phenotypes. There are a number of computational tools that summarize transcriptome data at the pathway level. However, there is no comparative study on how well these tools produce useful information at the cohort level, enabling comparison of many samples or patients.

21

Knowledge on the relationship between different biological modalities (RNA, chromatin, etc.) can help further our understanding of the processes through which biological components interact. The ready availability of multi-omics datasets has led to the development of numerous methods for identifying sources of common variation across biological modalities. However, evaluation of the performance of these methods, in terms of consistency, has been difficult because most methods are unsupervised. We present a comparison of sparse multiple canonical correlation analysis (Sparse mCCA), angle-based joint and individual variation explained (AJIVE) and multi-omics factor analysis (MOFA) using a cross-validation approach to assess overfitting and consistency. Both large and small-sample datasets were used to evaluate performance, and a permuted null dataset was used to identify overfitting through the application of our framework and approach. In the large-sample setting, we found that all methods demonstrated consistency and lack of overfitting; however, in the small-sample size setting, AJIVE provided the most stable results. We provide an R package so that our framework and approach can be applied to evaluate other methods and datasets.

21

The vast amount of experimental data from recent advances in the field of high-throughput biology begs for integration into more complex data structures such as genome-wide functional association networks. Such networks have been used for elucidation of the interplay of intra-cellular molecules to make advances ranging from the basic science understanding of evolutionary processes to the more translational field of precision medicine. The allure of the field has resulted in rapid growth of the number of available network resources, each with unique attributes exploitable to answer different biological questions. Unfortunately, the high volume of network resources makes it impossible for the intended user to select an appropriate tool for their particular research question. The aim of this paper is to provide an overview of the underlying data and representative network resources as well as to mention methods of integration, allowing a customized approach to resource selection. Additionally, this report will provide a primer for researchers venturing into the field of network integration.

19

Advances in the technologies and informatics used to generate and process large biological data sets (omics data) are promoting a critical shift in the study of biomedical sciences. While genomics, transcriptomics and proteinomics, coupled with bioinformatics and biostatistics, are gaining momentum, they are still, for the most part, assessed individually with distinct approaches generating monothematic rather than integrated knowledge. As other areas of biomedical sciences, including metabolomics, epigenomics and pharmacogenomics, are moving towards the omics scale, we are witnessing the rise of inter-disciplinary data integration strategies to support a better understanding of biological systems and eventually the development of successful precision medicine. This review cuts across the boundaries between genomics, transcriptomics and proteomics, summarizing how omics data are generated, analysed and shared, and provides an overview of the current strengths and weaknesses of this global approach. This work intends to target students and researchers seeking knowledge outside of their field of expertise and fosters a leap from the reductionist to the global-integrative analytical approach in research.

Concepts: Gene, Bioinformatics, Genomics, Proteomics, Proteome, Functional genomics, Transcriptome

14

The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.

Concepts: DNA, Bioinformatics, Natural selection, Biology, Life, Data, Skill, Training

11

Gene co-expression networks can be used to associate genes of unknown function with biological processes, to prioritize candidate disease genes or to discern transcriptional regulatory programmes. With recent advances in transcriptomics and next-generation sequencing, co-expression networks constructed from RNA sequencing data also enable the inference of functions and disease associations for non-coding genes and splice variants. Although gene co-expression networks typically do not provide information about causality, emerging methods for differential co-expression analysis are enabling the identification of regulatory genes underlying various phenotypes. Here, we introduce and guide researchers through a (differential) co-expression analysis. We provide an overview of methods and tools used to create and analyse co-expression networks constructed from gene expression data, and we explain how these can be used to identify genes with a regulatory role in disease. Furthermore, we discuss the integration of other data types with co-expression networks and offer future perspectives of co-expression analysis.

Concepts: DNA, Gene, Genetics, Gene expression, Transcription, Molecular biology, RNA, RNA polymerase

8

This review provides a historical overview of the inception and development of bioinformatics research in the Netherlands. Rooted in theoretical biology by foundational figures such as Paulien Hogeweg (at Utrecht University since the 1970s), the developments leading to organizational structures supporting a relatively large Dutch bioinformatics community will be reviewed. We will show that the most valuable resource that we have built over these years is the close-knit national expert community that is well engaged in basic and translational life science research programmes. The Dutch bioinformatics community is accustomed to facing the ever-changing landscape of data challenges and working towards solutions together. In addition, this community is the stable factor on the road towards sustainability, especially in times where existing funding models are challenged and change rapidly.

7

Owing to the emerging impact of bioinformatics and computational biology, in this article, we present an overview of the history and current state of the research on this field in Latin America (LA). It will be difficult to cover without inequality all the efforts, initiatives and works that have happened for the past two decades in this vast region (that includes >19 million km2 and >600 million people). Despite the difficulty, we have done an analytical search looking for publications in the field made by researchers from 19 LA countries in the past 25 years. In this way, we find that research in bioinformatics in this region should develop twice to approach the average world scientific production in the field. We also found some of the pioneering scientists who initiated and led bioinformatics in the region and were promoters of this new scientific field. Our analysis also reveals that spin-off began around some specific areas within the biomolecular sciences: studies on genomes (anchored in the new generation of deep sequencing technologies, followed by developments in proteomics) and studies on protein structures (supported by three-dimensional structural determination technologies and their computational advancement). Finally, we show that the contribution to this endeavour of the Iberoamerican Society for Bioinformatics, founded in Mexico in 2009, has been significant, as it is a leading forum to join efforts of many scientists from LA interested in promoting research, training and education in bioinformatics.