Discover the most talked about and latest scientific content & concepts.

Journal: Blood advances


Transfusing platelets during massive hemorrhage is debated because of a lack of high-quality evidence concerning outcomes in trauma patients. The objective of this study was to examine the effect of platelet transfusions on mortality in severely injured trauma patients. This work analyzed PROPPR (Pragmatic, Randomized Optimal Platelet and Plasma Ratios) trial patients who received only the first cooler of blood products, which either did or did not contain platelets. Primary outcomes were all-cause mortality at 24 hours and 30 days and hemostasis. Secondary outcomes included cause of death, complications, and hospital-, intensive care unit (ICU)-, and ventilator-free days. Continuous variables were compared using Wilcoxon rank sum tests. Categorical variables were compared using Fisher’s exact tests. There were 261 PROPPR patients who achieved hemostasis or died before receiving a second cooler of blood products (137 received platelets and 124 did not). Patients who received platelets also received more total plasma (median, 3 vs 2 U; P < .05) by PROPPR intervention design. There were no differences in total red blood cell transfusions between groups. After controlling for plasma volume, patients who received platelets had significantly decreased 24-hour (5.8% vs 16.9%; P < .05) and 30-day mortality (9.5% vs 20.2%; P < .05). More patients in the platelet group achieved hemostasis (94.9% vs 73.4%; P < .01), and fewer died as a result of exsanguination (1.5% vs 12.9%; P < .01). Patients who received platelets had a shorter time on mechanical ventilation (P < .05); however, no differences in hospital- or ICU-free days were observed. In conclusion, early platelet administration is associated with improved hemostasis and reduced mortality in severely injured, bleeding patients. This trial was registered at as # NCT01545232.


Patients with juvenile idiopathic arthritis (JIA) can experience a severe disease course, with progressive destructive polyarthritis refractory to conventional therapy with disease-modifying antirheumatic drugs including biologics, as well as life-threatening complications including macrophage activation syndrome (MAS). Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative immunomodulatory strategy for patients with such refractory disease. We treated 16 patients in 5 transplant centers between 2007 and 2016: 11 children with systemic JIA and 5 with rheumatoid factor-negative polyarticular JIA; all were either refractory to standard therapy, had developed secondary hemophagocytic lymphohistiocytosis/MAS poorly responsive to treatment, or had failed autologous HSCT. All children received reduced toxicity fludarabine-based conditioning regimens and serotherapy with alemtuzumab. Fourteen of 16 patients are alive with a median follow-up of 29 months (range, 2.8-96 months). All patients had hematological recovery. Three patients had grade II-IV acute graft-versus-host disease. The incidence of viral infections after HSCT was high, likely due to the use of alemtuzumab in already heavily immunosuppressed patients. All patients had significant improvement of arthritis, resolution of MAS, and improved quality of life early following allo-HSCT; most importantly, 11 children achieved complete drug-free remission at the last follow-up. Allo-HSCT using alemtuzumab and reduced toxicity conditioning is a promising therapeutic option for patients with JIA refractory to conventional therapy and/or complicated by MAS. Long-term follow-up is required to ascertain whether disease control following HSCT continues indefinitely.

Concepts: Disease, Infectious disease, Infection, Graft-versus-host disease, Rheumatoid arthritis, Organ transplant, Hematopoietic stem cell transplantation, Juvenile idiopathic arthritis


We completed a phase 1 dose-escalation trial to evaluate the safety of a dopamine receptor D2 (DRD2) antagonist thioridazine (TDZ), in combination with cytarabine. Thirteen patients 55 years and older with relapsed or refractory acute myeloid leukemia (AML) were enrolled. Oral TDZ was administered at 3 dose levels: 25 mg (n = 6), 50 mg (n = 4), or 100 mg (n = 3) every 6 hours for 21 days. Intermediate-dose cytarabine was administered on days 6 to 10. Dose-limiting toxicities (DLTs) included grade 3 QTc interval prolongation in 1 patient at 25 mg TDZ and neurological events in 2 patients at 100 mg TDZ (gait disturbance, depressed consciousness, and dizziness). At the 50-mg TDZ dose, the sum of circulating DRD2 antagonist levels approached a concentration of 10 μM, a level noted to be selectively active against human AML in vitro. Eleven of 13 patients completed a 5-day lead-in with TDZ, of which 6 received TDZ with hydroxyurea and 5 received TDZ alone. During this period, 8 patients demonstrated a 19% to 55% reduction in blast levels, whereas 3 patients displayed progressive disease. The extent of blast reduction during this 5-day interval was associated with the expression of the putative TDZ target receptor DRD2 on leukemic cells. These preliminary results suggest that DRD2 represents a potential therapeutic target for AML disease. Future studies are required to corroborate these observations, including the use of modified DRD2 antagonists with improved tolerability in AML patients. This trial was registered at as #NCT02096289.


Fumagillin is an antiangiogenic and antineoplastic fungal natural product, and TNP-470 is one of its most potent analogs. Decades of studies revealed that TNP-470 has potent anticancer activities via destruction of neovasculature. In stark contrast, TNP-470 has been reported to suppress lymphocyte proliferation, thereby limiting its clinical potentials. In an attempt to investigate whether the similar or opposite immunomodulatory effect of TNP-470 could act on myeloid cells, we found that TNP-470 potentiates the immunogenicity of dendritic cells (DCs) toward a phenotype with T helper cell type 1 (Th1)-stimulatory features. Using DC vaccine on a murine melanoma cancer model, the TNP-470-treated DC vaccine could significantly induce tumor-specific immunogenicity and substantially enhance tumor eradication when compared with vehicle-treated DC vaccine in a prophylactic setting. Enhanced tumor-specific immunogenicity and delayed tumor progression were observed in a therapeutic setting upon the TNP-470-treated DC vaccine. Our data showed that TNP-470 potentiates Toll-like receptor signaling, including NF-κB activation, in DCs to transcriptionally activate interleukin-12 production, thus inducing a Th1-immune response. Our current study uncovers a novel immune function of TNP-470 in DCs and redefines its role as a novel class of small molecule immune adjuvant in DC-based cancer vaccine given potentiation of DC immunogenicity is a major roadblock in DC vaccine development. Our study not only provides a novel adjuvant for ex vivo-cultured patient-specific DC vaccines for cancer treatment but also discovers the distinct immunostimulatory function of TNP-470 in DCs of myeloid lineage that differs from its immunosuppressive function in lymphoid cells.


CD38 is a transmembrane exoenzyme that is associated with poor prognosis in chronic lymphocytic leukemia (CLL). High CD38 levels in CLL cells are linked to increased cell migration, but the molecular basis is unknown. CD38 produces nicotinic acid adenine dinucleotide phosphate and adenosine 5'-diphosphate-ribose, both of which can act to increase intracellular Ca2+ levels. Here we show that CD38 expression increases basal intracellular Ca2+ levels and stimulates CLL cell migration both with and without chemokine stimulation. We find that CD38 acts via intracellular Ca2+ to increase the activity of the Ras family GTPase Rap1, which is in turn regulated by the Ca2+-sensitive Rap1 guanine-nucleotide exchange factor RasGRP2. Both Rap1 and RasGRP2 are required for CLL cell migration, and RasGRP2 is polarized in primary CLL cells with high CD38 levels. These results indicate that CD38 promotes RasGRP2/Rap1-mediated CLL cell adhesion and migration by increasing intracellular Ca2+ levels.


The main complication of replacement therapy with factor in hemophilia A (HemA) is the formation of inhibitors (neutralizing anti-factor VIII [FVIII] antibodies) in ∼30% of severe HemA patients. Because these inhibitors render replacement FVIII treatment essentially ineffective, preventing or eliminating them is of top priority in disease management. The extended half-life recombinant FVIII Fc fusion protein (rFVIIIFc) is an approved therapy for HemA patients. In addition, it has been reported that rFVIIIFc may induce tolerance to FVIII more readily than FVIII alone in HemA patients that have developed inhibitors. Given that the immunoglobulin G1 Fc region has the potential to interact with immune cells expressing Fc receptors (FcRs) and thereby affect the immune response to rFVIII, we investigated how human macrophages, expressing both FcRs and receptors reported to bind FVIII, respond to rFVIIIFc. We show herein that rFVIIIFc, but not rFVIII, uniquely skews macrophages toward an alternatively activated regulatory phenotype. rFVIIIFc initiates signaling events that result in morphological changes, as well as a specific gene expression and metabolic profile that is characteristic of the regulatory type Mox/M2-like macrophages. Further, these changes are dependent on rFVIIIFc-FcR interactions. Our findings elucidate mechanisms of potential immunomodulatory properties of rFVIIIFc.


Platelet-associated complications including thrombosis, thrombocytopenia, and hemorrhage are commonly observed during various inflammatory diseases such as sepsis, inflammatory bowel disease, and psoriasis. Despite the reported evidence on numerous mechanisms/molecules that may contribute to the dysfunction of platelets, the primary mechanisms that underpin platelet-associated complications during inflammatory diseases are not fully established. Here, we report the discovery of formyl peptide receptor 2, FPR2/ALX, in platelets and its primary role in the development of platelet-associated complications via ligation with its ligand, LL37. LL37 acts as a powerful endogenous antimicrobial peptide, but it also regulates innate immune responses. We demonstrate the impact of LL37 in the modulation of platelet reactivity, hemostasis, and thrombosis. LL37 activates a range of platelet functions, enhances thrombus formation, and shortens the tail bleeding time in mice. By utilizing a pharmacological inhibitor and Fpr2/3 (an ortholog of human FPR2/ALX)-deficient mice, the functional dependence of LL37 on FPR2/ALX was determined. Because the level of LL37 is increased in numerous inflammatory diseases, these results point toward a critical role for LL37 and FPR2/ALX in the development of platelet-related complications in such diseases. Hence, a better understanding of the clinical relevance of LL37 and FPR2/ALX in diverse pathophysiological settings will pave the way for the development of improved therapeutic strategies for a range of thromboinflammatory diseases.


Programmed death-ligand 1 (PD-L1) and its receptor, programmed cell death-1 (PD-1), are important negative regulators of immune cell activation. Therapeutically targeting PD-1/PD-L1 in diffuse large B-cell lymphoma (DLBCL) patients with a single agent has limited activity, meriting a deeper understanding of this complex biology and of available PD-L1 clinical assays. In this study, we leveraged 2 large de novo DLBCL phase 3 trials (GOYA and MAIN) to better understand the biologic and clinical relevance of PD-L1 in de novo DLBCL. PD-L1 was expressed on myeloid cells in 85% to 95% of DLBCL patients (depending on staining procedure), compared with 10% on tumor cells, and correlated with macrophage gene expression. PD-L1 did not identify high-risk patients in de novo DLBCL; it correlated with STAT3, macrophage gene expression, and improved outcomes among a subset of patients. These results may help identify immunologically distinct DLBCL subsets relevant for checkpoint blockade. GOYA and MAIN trials were registered at as #NCT01287741 and #NCT00486759, respectively.


Murine models showed that CD8+CD44himemory T ™ cells could eradicate malignant cells without inducing graft-versus-host disease (GVHD). We evaluated the feasibility and safety of infusing freshly isolated and purified donor-derived phenotypic CD8+TMcells into adults with disease relapse after allogeneic hematopoietic cell transplantation (HCT). Phenotypic CD8 TMcells were isolated after unmobilized donor apheresis using a tandem immunomagnetic selection strategy of CD45RA depletion followed by CD8+enrichment. Fifteen patients received CD8+TMcells at escalating doses (1 × 106, 5 × 106, or 10 × 106cells per kg). Thirteen received cytoreduction before CD8+TMcell infusion, and 9 had active disease at the time of infusion. Mean yield and purity of the CD8+TMinfusion were 38.1% and 92.8%, respectively; >90% had CD8+T effector memory phenotype, cytokine expression, and secretion profile. No adverse infusional events or dose-limiting toxicities occurred; GVHD developed in 1 patient (grade 2 liver). Ten patients (67%) maintained or achieved response (7 complete response, 1 partial response, 2 stable disease) for at least 3 months after infusion; 4 of the responders had active disease at the time of infusion. With a median follow-up from infusion of 328 days (range, 118-1328 days), median event-free survival and overall survival were 4.9 months (95% confidence interval [CI], 1-19.3 months) and 19.6 months (95% CI, 5.6 months to not reached), respectively. Collection and enrichment of phenotypic CD8+TMcells is feasible, well tolerated, and associated with a low incidence of GVHD when administered as a manipulated infusion of donor lymphocytes in patients who have relapsed after HCT. This trial was registered at as #NCT01523223.

Concepts: Gene, Cancer, Medical terms, Graft-versus-host disease, Hematopoietic stem cell transplantation, Normal distribution, Thymus, Infusion


Adolescents and young adults (AYAs, 15-39 years) with acute lymphoblastic leukemia (ALL) represent a heterogeneous population who receive care in pediatric or adult cancer settings. Using the California Cancer Registry, we describe AYA ALL patterns of care and outcomes over the past decade. Sociodemographics, treatment location, and front-line therapies administered to AYAs diagnosed with ALL between 2004 and 2014 were obtained. Cox regression models evaluated associations between ALL setting and regimen and overall survival (OS) and leukemia-specific survival (LSS) for the entire cohort, younger AYA (<25 years), and AYAs treated in the adult cancer setting only. Of 1473 cases, 67.7% were treated in an adult setting; of these, 24.8% received a pediatric ALL regimen and 40.7% were treated at a National Cancer Institute (NCI)-designated center. In multivariable analyses, front-line treatment in a pediatric (vs adult) setting (OS HR = 0.53, 95% confidence interval [CI], 0.37-0.76; LSS HR = 0.51, 95% CI, 0.35-0.74) and at an NCI/Children's Oncology Group (COG) center (OS HR = 0.80, 95% CI, 0.66-0.96; LSS HR = 0.80, 95% CI, 0.65-0.97) were associated with significantly superior survival. Results were similar when analyses were limited to younger AYAs. Outcomes for AYAs treated in an adult setting did not differ following front-line pediatric or adult ALL regimens. Our population-level findings demonstrate that two-thirds of AYAs with newly diagnosed ALL are treated in an adult cancer setting, with the majority receiving care in community settings. Given the potential survival benefits, front-line treatment of AYA ALL at pediatric and/or NCI/COG-designated cancer centers should be considered.

Concepts: Regression analysis, Cancer, Chemotherapy, Leukemia, Adolescence, National Cancer Institute, Acute lymphoblastic leukemia, Young adult