Discover the most talked about and latest scientific content & concepts.

Journal: Biosensors & bioelectronics


Access to safe drinking water is a human right, crucial to combat inequalities, reduce poverty and allow sustainable development. In many areas of the world, however, this right is not guaranteed, in part because of the lack of easily deployable diagnostic tools. Low-cost and simple methods to test water supplies onsite can protect vulnerable communities from the impact of contaminants in drinking water. Ideally such devices would also be easy to dispose of so as to leave no trace, or have a detrimental effect on the environment. To this aim, we here report the first paper microbial fuel cell (pMFC) fabricated by screen-printing biodegradable carbon-based electrodes onto a single sheet of paper, and demonstrate its use as a shock sensor for bioactive compounds (e.g. formaldehyde) in water. We also show a simple route to enhance the sensor performance by folding back-to-back two pMFCs electrically connected in parallel. This promising proof of concept work can lead to a revolutionizing way of testing water at point of use, which is not only green, easy-to-operate and rapid, but is also affordable to all.

Concepts: Water, Electrochemistry, Toxicity, Electrolysis, Sustainability, Water quality, Fuel cell, Microbial fuel cell


We describe a novel infection-responsive coating for urinary catheters that provides a clear visual early warning of Proteus mirabilis infection and subsequent blockage. The crystalline biofilms of P. mirabilis can cause serious complications for patients undergoing long-term bladder catheterisation. Healthy urine is around pH 6, bacterial urease increases urine pH leading to the precipitation of calcium and magnesium deposits from the urine, resulting in dense crystalline biofilms on the catheter surface that blocks urine flow. The coating is a dual layered system in which the lower poly(vinyl alcohol) layer contains the self-quenching dye carboxyfluorescein. This is capped by an upper layer of the pH responsive polymer poly(methyl methacrylate-co-methacrylic acid) (Eudragit S100®). Elevation of urinary pH (>pH 7) dissolves the Eudragit layer, releasing the dye to provide a clear visual warning of impending blockage. Evaluation of prototype coatings using a clinically relevant in vitro bladder model system demonstrated that coatings provide up to 12h advanced warning of blockage, and are stable both in the absence of infection, and in the presence of species that do not cause catheter blockage. At the present time, there are no effective methods to control these infections or provide warning of impending catheter blockage.

Concepts: Present, Time, Bacteria, Urine, Urinary system, Urease, Urinary catheterization, Proteus mirabilis


We have developed a cost-effective and portable graphene-enabled biosensor to detect Zika virus with a highly specific immobilized monoclonal antibody. Field Effect Biosensing (FEB) with monoclonal antibodies covalently linked to graphene enables real-time, quantitative detection of native Zika viral (ZIKV) antigens. The percent change in capacitance in response to doses of antigen (ZIKV NS1) coincides with levels of clinical significance with detection of antigen in buffer at concentrations as low as 450pM. Potential diagnostic applications were demonstrated by measuring Zika antigen in a simulated human serum. Selectivity was validated using Japanese Encephalitis NS1, a homologous and potentially cross-reactive viral antigen. Further, the graphene platform can simultaneously provide the advanced quantitative data of nonclinical biophysical kinetics tools, making it adaptable to both clinical research and possible diagnostic applications. The speed, sensitivity, and selectivity of this first-of-its-kind graphene-enabled Zika biosensor make it an ideal candidate for development as a medical diagnostic test.

Concepts: Immune system, Antibody, Protein, Bacteria, Measurement, Monoclonal antibodies, Antigen, Epitope


In spite of the clinical need, there is a major gap in rapid diagnostics for identification and quantitation of E. coli and other pathogens, also regarded as the biggest bottleneck in the fight against the spread of antimicrobial resistant bacterial strains. This study reports for the first time an optical, smartphone-based microfluidic fluorescence sandwich immunoassay capable of quantifying E. coli in buffer and synthetic urine in less than 25 min without sample preparation nor concentration. A limit of detection (LoD) up to 240 CFU/mL, comensurate with cut-off for UTIs (103-105 CFUs/mL) was achieved. Replicas of full response curves performed with 100-107 CFUs/mL of E. coli K12 in synthetic urine yielded recovery values in the range 80-120%, assay reproducibility below 30% and precision below 20%, therefore similar to high-performance automated immunoassays. The unrivalled LoD was mainly linked to the ‘open fluidics’ nature of the 10-bore microfluidic strips used that enabled passing a large volume of sample through the microcapillaries coated with capture antibody. The new smartphone based test has the potential of being as a rapid, point-of-care test for rule-in of E. coli infections that are responsible for around 80% of UTIs, helping to stop the over-prescription of antibiotics and the monitoring of patients with other symptomatic communicable diseases caused by E. coli at global scale.


This paper outlines a simple label-free sensor system for the sensitive, real time measurement of an important protein biomarker of sepsis, using a novel microelectrode integrated onto a needle shaped substrate. Sepsis is a life threatening condition with a high mortality rate, which is characterised by dysregulation of the immune response following infection, leading to organ failure and cardiovascular collapse if untreated. Currently, sepsis testing is typically carried out by taking blood samples which are sent to a central laboratory for processing. Analysis times can be between 12 and 72 h making it notoriously difficult to diagnose and treat patients in a timely manner. The pathobiology of sepsis is becoming increasingly well understood and clinically relevant biomarkers are emerging, which could be used in conjunction with a biosensor to support real time diagnosis of sepsis. In this context, microelectrodes have the analytical advantages of reduced iR drop, enhanced signal to noise ratio, simplified quantification and the ability to measure in hydrodynamic situations, such as the bloodstream. In this study, arrays of eight (r = 25 µm) microelectrodes were fabricated onto needle shaped silicon substrates and electrochemically characterised in order to confirm successful sensor production and to verify whether the observed behaviour agreed with established theory. After this, the electrodes were functionalised with an antibody for interleukin-6 (IL-6) which is a protein involved in the immune response to infection and whose levels in the blood increase during progression of sepsis. The results show that IL-6 is detectable at physiologically relevant levels (pg/mL) with incubation times as short as 2.5 min. Electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) measurements were taken and DPV was concluded to be the more suitable form of measurement. In contrast to the accepted view for macro electrodes that the impedance increases upon antigen bind, we report herein a decrease in the micro electrode impedance upon binding. The small size of the fabricated devices and their needle shape make them ideal for either point of care testing or insertion into blood vessels for continuous sepsis monitoring.


Antimicrobial resistance (AMR) is an issue of upmost global importance, with an annually increasing mortality rate and growing economic burden. Poor antimicrobial stewardship has resulted in an abundance and diverse range of antimicrobial resistance mechanisms. To tackle AMR effectively, better diagnostic tests must be developed in order to improve antibiotic stewardship and reduce the emergence of antibiotic resistant organisms. This study employs a low-cost, commercially available screen printed electrode modified with an agarose-based hydrogel deposit to monitor bacterial growth using the techniques of electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) giving rise to a new approach to measuring susceptibility. Susceptible and drug resistant Staphylococcus aureus strains were deposited onto agarose gel modified electrodes which contained clinically important antibiotics to establish growth profiles for each bacterial strain and monitor the influence of the antibiotic on bacterial growth. The results show that S. aureus is able to grow on electrodes modified with gel containing no antibiotic, but is inhibited when the gel modified electrode is seeded with antibiotic. Conversely, methicillin-resistant S. aureus (MRSA; the drug resistant strain) is able to grow on gel modified electrodes containing clinically relevant concentrations of antibiotic. Results show rapid growth profiles, with possible time to results for antibiotic susceptibility <45 min, a significant improvement on the current gold standards of at least 1-2 days.


A bioelectronic nose for the real-time assessment of water quality was constructed with human olfactory receptor (hOR) and single-walled carbon nanotube field-effect transistor (swCNT-FET). Geosmin (GSM) and 2-methylisoborneol (MIB), mainly produced by bacteria, are representative odor compounds and also indicators of contamination in the water supply system. For the screening of hORs which respond to these compounds, we performed CRE-luciferase assays of the two odorants in heterologous cell system. Human OR51S1 for GSM and OR3A4 for MIB were selected, and nanovesicles expressing the hORs on surface were produced from HEK-293 cell. Carbon nanotube field-effect transistor was functionalized with the nanovesicles. The bioelectronic nose was able to selectively detect GSM and MIB at concentrations as low as a 10ngL(-1). Furthermore, detection of these compounds from the real samples such as tap water, bottled water and river water was available without any pretreatment processes.

Concepts: Human, Water, Water pollution, Carbon, Carbon nanotube, Water quality, Drinking water, Water supply


We report on an ultrasensitive and selective fluorescence assay for Sudan I and III against the influence of Sudan II and IV based on ligand exchange mechanism. Calcein as a fluorescence indicator and Sudan I-IV as model analytes were employed to investigate the analytical feature of this assay platform. Results show that the fluorescence of calcein can be efficiently quenched by Cu(II). When the ligand exchange reaction proceeds, calcein is deprived of Cu(II) by Sudan I and III, resulting in the fluorescence recovery of calcein. However, the ligand exchange reaction does not happen in the presence of Sudan II or IV due to the 2-methyl steric effects, which is favorable for selective determination of Sudan I and III against the influence of Sudan II and IV. It was found that the fluorescence enhancement efficiency (FEE) against the concentration of Sudan (c(Sudan), nmol L⁻¹) shows a linear relationship. The calibration equations are FEE(Sudan I)=0.0032 c(Sudan I)-0.02613, and FEE(Sudan III)=0.0033 c(Sudan III)-0.02467 over the corresponding linear range of 11.25-2078.29 and 9.44-1035.78 nmol L⁻¹ with the correlation coefficients (R(2)) of 0.9984 and 0.9955, respectively. And the detection limits (3σ/slope) are calculated to be 211.3 and 208.5 pmol L⁻¹ for Sudan I and III, respectively, showing ultralow detection limit. The Sudan dye in a commercial chilli powder sample was assayed with satisfactory results.

Concepts: Measurement, Analytical chemistry, Molar concentration, Sudan III, Sudan IV, Sudan I


Zeatins, a major type of cytokinin, are ubiquitous in higher plants, and involve in regulating a wide range of developmental processes. The development of highly specific ligands to zeatins would be very useful in plant biological research. Here we describe a group of oligonucleotide ligands (aptamers) generated against trans-zeatin. The optimized aptamers possess strong affinity to trans-zeatin and trans-zeatin riboside (Kd=3-5 μM), and relatively weak affinity (Kd=27-30 μM) to cis-zeatin and dihydrozeatin. These aptamers adopt a hairpin-G-quadruplex structure for binding to zeatin. A fluorescence turn-on aptasensor based on graphene oxide (GO) was developed for the recognition of zeatins. The specificity assay of this aptasensor shows good response to zeatins, and no response to the adenine derivatives (analog of zeatins) abundantly existing in biological samples. These results show the great potential of these aptamers in chemical analysis and biological investigation of zeatins.

Concepts: DNA, Molecular biology, Plant, Aptamer, Cytokinin, Zeatin, Coconut milk, Cytokinins


Dynamic light scattering based sensor for glucose was developed with oligonucleotide functionalized gold nanoparticles (Oligo-AuNPs). Oligonucleotide 5'-SH-(A)(12)-AGACAAGAGAGG-3' (Oligo 1) modified AuNPs and oligonucleotide 5'-CAACAGAGAACG-(A)(12)-HS-3' (Oligo 2) modified AuNPs could hybridize with oligonulceotide 5'-CGTTCTCTGTTGCCTCTCTTGTCT-3' (Oligo 3), which resulted in the aggregation of Oligo-AuNPs probes, and triggered the increase of their average diameter. However, Oligo 3 could be cleaved into DNA fragments by the mixture of glucose, glucose oxidase (GOD) and Fe(2+), and the DNA fragments could not hybridize with Oligo-AuNPs probes. Under the conditions of 3.7 nM Oligo 1-AuNPs, 3.7 nM Oligo 2-AuNPs, 8.0 μg/mL GOD, 100 nM Oligo 3 and 900 nM Fe(2+), the average diameter of Oligo-AuNPs probes decreased linearly with the increasing concentration of glucose over the range from 50 pmol/L to 5.0 nmol/L, with a detection limit of 38 pmol/L (3σ/slope). Moreover, five sugars had no effect on the average diameter of mixture of Oligo-AuNPs probes, GOD and Fe(2+), which demonstrated the good selectivity of the assay.

Concepts: Nanoparticle, Scattering, Nanotechnology, Gold, Light scattering, Dynamic light scattering, Rayleigh scattering, Static light scattering