Discover the most talked about and latest scientific content & concepts.

Journal: Biological & pharmaceutical bulletin


In the present study, novel ultradeformable liposomes (menthosomes; MTS), deformable liposomes (transfersomes; TFS) and conventional liposomes (CLP) were compared in their potential for transdermal delivery of meloxicam (MX). MTS, TFS and CLP were investigated for size, size distribution, zeta potential, elasticity, entrapment efficiency and stability. In vitro skin permeation using hairless mice skin was evaluated. Vesicular morphology was observed under freeze-fractured transmission electron microscopy (FF-TEM). Intrinsic thermal properties were performed using differential scanning calorimetry (DSC) and X-ray diffraction. The skin permeation mechanism was characterized using confocal laser scanning microscopy (CLSM). The results indicated that the difference in physicochemical characteristics of MTS, TFS and CLP affected the skin permeability. MTS and TFS showed higher flux of MX than CLP. CLSM image showed deformable vesicles mechanism for delivery of MX across the hairless mice skin. Our study suggested that ultradeformable and deformable liposomes (MTS and TFS) had a potential to use as transdermal drug delivery carriers for MX.

Concepts: X-ray crystallography, Transmission electron microscopy, Diffraction, X-ray, Scientific techniques, Transdermal patch, Electron, Differential scanning calorimetry


Heat-shock protein 70 (HSP70) is known to function as a protective molecular chaperone that is massively induced in response to misfolded proteins following cerebral ischemia. The objective of this study was to characterize HSP70 induction by Z-ligustilide and explore its potential role in protection against cerebral ischemia-reperfusion injury. Our results demonstrated that the intranasal administration of Z-ligustilide reduced infarct volume and improved neurological function in a rat stroke model. Meanwhile, Z-ligustilide enhanced the cell viability of PC12 cells insulted by oxygen glucose deprivation-reoxygenation (OGD-Reoxy) and decreased apoptotic and necrotic cell death. Importantly, Z-ligustilide induced HSP70 expression both in vitro and in vivo. Although heat-shock factor 1 (HSF1) nuclear translocation was promoted by Z-ligustilide, HSP70-based heat-shock element (HSE)-binding luciferase activity was not activated, and HSP70 expression responsive to Z-ligustilide was not attenuated by HSE decoy oligonucleotides. However, Z-ligustilide significantly activated the phosphorylation of mitogen-activated protein kinases (MAPKs). Further inhibition of MAPK activity by specific inhibitors attenuated HSP70 induction by Z-ligustilide. Meanwhile, downregulation of HSP70 using KNK437, an HSP70 synthesis inhibitor, or small hairpin RNA (shRNA) significantly attenuated the protection of Z-ligustilide against OGD-Reoxy-induced injury. Moreover, the application of specific inhibitors of MAPKs also achieved similar results. Finally, Z-ligustilide alleviated the accumulation of ubiquitinated proteins induced by OGD-Reoxy, which was inhibited by HSP70-shRNA. Taken together, our results demonstrated that Z-ligustilide may induce protective HSP70 expression via the activation of the MAPK pathway, but not canonical HSF1 transcription. HSP70 plays a key role in the protection of Z-ligustilide against OGD-Reoxy-induced injury.

Concepts: Heat shock protein, Proteasome, Mitogen-activated protein kinase, Enzyme, Chaperone, Adenosine triphosphate, Signal transduction, Protein


In many parts of the world, the possession and cultivation of Cannabis sativa L. are restricted by law. As chemical or morphological analyses cannot identify the plant in some cases, a simple yet accurate DNA-based method for identifying C. sativa is desired. We have developed a loop-mediated isothermal amplification (LAMP) assay for the rapid identification of C. sativa. By optimizing the conditions for the LAMP reaction that targets a highly conserved region of tetrahydrocannabinolic acid (THCA) synthase gene, C. sativa was identified within 50 min at 60-66 °C. The detection limit was the same as or higher than that of conventional PCR. The LAMP assay detected all 21 specimens of C. sativa, showing high specificity. Using a simple protocol, the identification of C. sativa could be accomplished within 90 min from sample treatment to detection without use of special equipment. A rapid, sensitive, highly specific, and convenient method for detecting and identifying C. sativa has been developed and is applicable to forensic investigations and industrial quality control.

Concepts: Hemp, Identification, Cannabis, Cannabis sativa


Persimmon, a deciduous tree of the family Ebenaceae, is found throughout East Asia and contains high levels of tannins. This class of natural compounds exhibit favorable toxicity profiles along with bactericidal activity without the emergence of resistant bacteria, suggesting potential medical applications. Consistent with these observations, persimmon leaves show antibacterial activity. However, the mechanism of persimmon antibacterial activity remains unknown. In the present work, we demonstrate that the antibacterial activity of persimmon reflects the generation of reactive oxygen from tannins. The identification and quantification of reactive oxygen generated from persimmon and the level of antibacterial activity were determined.

Concepts: Peroxide, Deciduous, Leaf, Plant, Persimmon, Oak, Hydrogen peroxide, Oxygen


The aim of the present study was to evaluate the sub-acute oral toxicity of acetaminophen in Sprague Dawley (SD) rats at 250 to 1000 mg/kg body weight. The following observations were noticed during the study. No mortality in male and female rats, at and up to the dose of 1000 mg/kg body weight (b.wt.). There were abnormal clinical signs observed on female animals at 1000mg/kg b.wt. dose level. There were no difference in body weight gain and no effect on the daily feed consumption. No toxicologically significant effect on the haematological parameters but liver and kidney related biochemical parameter showed significant difference at 1000mg/kg b.wt. in females. No toxicologically significant effect on the urinalysis parameters, absolute and relative organ weights and gross pathological alterations; whereas histopathological alterations were observed in female liver at dose level of 1000mg/kg b.wt. were observed. Based on the findings of this study, the No Observed Adverse Effect Level (NOAEL) of acetaminophen in SD rats, following oral administration at the doses of 250, 500 and 1000 mg/kg on daily basis was found to be 500 mg/kg body weight.

Concepts: Gender, Sex, Paracetamol, Female, Male, Liver, Pathology, Laboratory rat


Forest bathing is suggested to have beneficial effects on various aspects of human health. Terpenes, isoprene based-phytochemicals emitted from trees, are largely responsible for these beneficial effects of forest bathing. Although the therapeutic effects of terpenes on various diseases have been revealed, their effects on neuronal health have not yet been studied in detail. Here, we screened 16 terpenes that are the main components of Korean forests using Drosophila Alzheimer’s disease (AD) models to identify which terpenes have neuroprotective effects. Six out of the 16 terpenes, ρ-cymene, limonene (+), limonene (-), linalool, α-pinene (+), and β-pinene (-), partially suppressed the beta amyloid 42 (Aβ42)-induced rough eye phenotype when fed to Aβ42-expressing flies. Among them, limonene (+) restored the decreased survival of flies expressing Aβ42 in neurons during development. Limonene (+) treatment did not affect Aβ42 accumulation and aggregation, but did cause to decrease cell death, reactive oxygen species levels, extracellular signal-regulated kinase phosphorylation, and inflammation in the brains or the eye imaginal discs of Aβ42-expressing flies. This neuroprotective effect of limonene (+) was not associated with autophagic activity. Our results suggest that limonene (+) has a neuroprotective function against the neurotoxicity of Aβ42 and, thus, is a possible therapeutic reagent for AD.


Amyloid β protein (Aβ) causes neurotoxicity and cognitive impairment in Alzheimer’s disease (AD). Oxidative stress is closely related to the pathogenesis of AD. We have previously reported that 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC), a component of green perilla, enhances cellular resistance to oxidative damage through the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Here, we investigated the effects of DDC on cortical neuronal death induced by Aβ. When Aβ and DDC had been preincubated for 3 hours, the aggregation of Aβ was significantly suppressed. In this condition, we found that DDC provided a neuroprotective action on Aβ-induced cytotoxicity. Treatment with DDC for 24 hours increased the expression of heme oxygenase-1 (HO-1), and this was controlled by the activation of the Nrf2-ARE pathway. However, DDC did not affect Aβ-induced neuronal death under any of these conditions. These results suggest that DDC prevents the aggregation of Aβ and inhibits neuronal death induced by Aβ, and although it activates the Nrf2-ARE pathway, this mechanism is less involved its neuroprotective effect.


Exposure to environmental neurotoxins is suspected to be a risk factor for sporadic progressive neurodegenerative diseases. Parkinson’s disease has been associated with exposure to the pesticide rotenone, a mitochondrial respiration inhibitor. We previously reported that intranasal administration of rotenone in mice induced dopaminergic (DA) neurodegeneration in the olfactory bulb (OB) and reduced olfactory functions. In the present study, we investigated the DA neurons in the brains of mice that were administered rotenone intranasally for an extended period. We found that the olfactory function of mice was attenuated by rotenone administration. Electrophysiological analysis of the mitral cells, which are output neurons in the OB, revealed that the inhibitory input into the mitral cells was retarded. In the immunohistochemical analysis, neurite degeneration of DA neurons in the substantia nigra was observed in rotenone-administered mice, indicating that rotenone progressively initiated the degeneration of cerebral DA neurons via the nasal route.

Concepts: Neurodegenerative disorders, Substantia nigra, Olfactory system, Neuroscience, Neurology, Parkinson's disease, Action potential, Dopamine


Amyloid-β (Aβ) is one of the major causative agents of Alzheimer’s disease (AD), the most common neurodegenerative disorder characterized by progressive cognitive impairment. While effective drugs for AD are currently limited, identifying anti-Aβ compounds from natural products has been shown as a promising strategy which may lead to breakthroughs for new drug candidate discovery. We have previously reported that 7-(4-hydroxyphenyl)-1-phenyl-4E-hepten-3-one (AO-1), a diarylheptanoid extracted from the plant Alpinia officinarum, has strong effects on neuronal differentiation and neurite outgrowth in vitro and in vivo. The present study further uncovers that AO-1 exerts neuroprotective effects against the neurotoxicity caused by Aβ. Under the damage of Aβ oligomers, the major pathological forms of Aβ, dendrites of neurons become atrophic and simplified, but such impairments were substantially alleviated by AO-1 treatment. Moreover, AO-1 reduced apoptotic levels and oxidative stress triggered by Aβ. Further analysis showed that the anti-caspase and dendrite protective effects of AO-1 were dependent on activation of PI3K-mTOR pathways. These findings collectively identify AO-1 as a beneficial compound to ameliorate the deleterious effects of Aβ on dendrite integrity and cell survival, and may provide new insights on drug discovery of AD.

Concepts: Synapse, Neurology, Axon, Pharmacology, Clinical trial, Natural product, Drug discovery, Neuron


Alzheimer’s disease (AD) is the most common neurodegenerative disorder, characterized by progressive neuronal loss with amyloid β-peptide (Aβ) plaques. Despite several drugs currently used to treat AD, their beneficial effects on AD progress remains under debate. Here, we established a rapid in vivo screening system using Drosophila AD models to assess the neuroprotective activities of medicinal plants that have been used in traditional Chinese medicine. Among 23 medicinal plants tested, the extracts from five plants, Coriandrum sativum, Nardostachys jatamansi, Polygonum multiflorum (P. multiflorum), Rehmannia glutinosa, and Sorbus commixta (S. commixta), showed protective effects against the Aβ42 neurotoxicity. We further characterized the neuroprotective activity of ethanol extracts from P. multiflorum and S. commixta. Aβ42-expressing flies that we used showed AD neurological phenotypes, such as decreased survival and motility and increased cell death and reactive oxygen species level. However, feeding these flies extracts from P. multiflorum or S. commixta showed strong suppression of such phenotypes. Similar results were observed in human cells, so that the treatment of P. multiflorum and S. commixta extracts increased the viability of Aβ-treated SH-SY5Y cells. Moreover, 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucoside, one of the main constituents of P. multiflorum, also showed similar protective activity against Aβ42 cytotoxicity in both Drosophila and human cells. Taken together, our results suggest that both P. multiflorum and S. commixta have therapeutic potential for the treatment of neurodegenerative diseases, such as AD.

Concepts: Medicinal plants, Neurodegeneration, Oxygen, Neuron, Neuroscience, Mitochondrion, Neurodegenerative disorders, Neurology