SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Biointerphases

28

The use of multivariate analysis (MVA) methods in the processing of time-of-flight secondary ion mass spectrometry (ToF-SIMS) data has become increasingly more common. MVA presents a powerful set of tools to aid the user in processing data from complex, multicomponent surfaces such as biological materials and biosensors. When properly used, MVA can help the user identify the major sources of differences within a sample or between samples, determine where certain compounds exist on a sample, or verify the presence of compounds that have been engineered into the surface. Of all the MVA methods, principal component analysis (PCA) is the most commonly used and forms an excellent starting point for the application of many of the other methods employed to process ToF-SIMS data. Herein we discuss the application of PCA and other MVA methods to multicomponent ToF-SIMS data and provide guidelines on their application and use.

Concepts: Spectroscopy, Mass spectrometry, Multivariate statistics, Principal component analysis, Computer program, Linear discriminant analysis, Secondary ion mass spectrometry, The Unscrambler

28

Protein adsorption is one of the key parameters influencing the biocompatibility of medical device materials. This study investigates serum protein adsorption and bacterial attachment on polymer coatings deposited using an atmospheric pressure plasma jet system. The adsorption of bovine serum albumin and bovine fibrinogen (Fg) onto siloxane and fluorinated siloxane elastomeric coatings that exhibit water contact angles (θ) ranging from superhydrophilic (θ < 5°) to superhydrophobic (θ > 150°) were investigated. Protein interactions were evaluated in situ under dynamic flow conditions by spectroscopic ellipsometry. Superhydrophilic coatings showed lower levels of protein adsorption when compared with hydrophobic siloxane coatings, where preferential adsorption was shown to occur. Reduced levels of protein adsorption were also observed on fluorinated siloxane copolymer coatings exhibiting hydrophobic wetting behaviour. The lower levels of protein adsorption observed on these surfaces indicated that the presence of fluorocarbon groups have the effect of reducing surface affinity for protein attachment. Analysis of superhydrophobic siloxane and fluorosiloxane surfaces showed minimal indication of protein adsorption. This was confirmed by bacterial attachment studies using a Staphylococcus aureus strain known to bind specifically to Fg, which showed almost no attachment to the superhydrophobic coating after protein adsorption experiments. These results showed the superhydrophobic surfaces to exhibit antimicrobial properties and significantly reduce protein adsorption.

Concepts: Photosynthesis, Staphylococcus aureus, Staphylococcus, Polymer, Serum albumin, Bovine serum albumin, Contact angle, Fluorocarbon

28

Protein-surface interactions are crucial to the overall biocompatability of biomaterials, and are thought to be the impetus towards the adverse host responses such as blood coagulation and complement activation. Only a few studies hint at the ultra-low fouling potential of zwitterionic poly(carboxybetaine methacrylate) (PCBMA) grafted surfaces and, of those, very few systematically investigate their non-fouling behavior. In this work, single protein adsorption studies as well as protein adsorption from complex solutions (i.e. human plasma) were used to evaluate the non-fouling potential of PCBMA grafted silica wafers prepared by nitroxide-mediated free radical polymerization. PCBMAs used for surface grafting varied in charge separating spacer groups that influence the overall surface charges, and chain end-groups that influence the overall hydrophilicity, thereby, allows a better understanding of these effects towards the protein adsorption for these materials. In situ ellipsometry was used to quantify the adsorbed layer thickness and adsorption kinetics for the adsorption of four proteins from single protein buffer solutions, viz, lysozyme, α-lactalbumin, human serum albumin and fibrinogen. Total amount of protein adsorbed on surfaces differed as a function of surface properties and protein characteristics. Finally, immunoblots results showed that human plasma protein adsorption to these surfaces resulted, primarily, in the adsorption of human serum albumin, with total protein adsorbed amounts being the lowest for PCBMA-3 (TEMPO). It was apparent that surface charge and chain hydrophilicity directly influenced protein adsorption behavior of PCBMA systems and are promising materials for biomedical applications.

Concepts: Proteins, Protein, Blood, Polymer chemistry, Fibrin, Radical, Adsorption, Surface chemistry

25

Bacteria that adhere to the surfaces of implanted medical devices can cause catastrophic infection. Since chemical modifications of materials' surfaces have poor long-term performance in preventing bacterial buildup, approaches using bactericidal physical surface topography have been investigated. The authors used Nanoimprint Lithography was used to fabricate a library of biomimetic nanopillars on the surfaces of poly(methyl methacrylate) (PMMA) films. After incubation of Escherichia coli (E. coli) on the structured PMMA surfaces, pillared surfaces were found to have lower densities of adherent cells compared to flat films (67%-91% of densities on flat films). Moreover, of the E. coli that did adhere a greater fraction of them were dead on pillared surfaces (16%-141% higher dead fraction than on flat films). Smaller more closely spaced nanopillars had better performance. The smallest most closely spaced nanopillars were found to reduce the bacterial load in contaminated aqueous suspensions by 50% over a 24-h period compared to flat controls. Through quantitative analysis of cell orientation data, it was determined that the minimum threshold for optimal nanopillar spacing is between 130 and 380 nm. Measurements of bacterial cell length indicate that nanopillars adversely affect E. coli morphology, eliciting a filamentous response. Taken together, this work shows that imprinted polymer nanostructures with precisely defined geometries can kill bacteria without any chemical modifications. These results effectively translate bactericidal nanopillar topographies to PMMA, an important polymer used for medical devices.

Concepts: DNA, Bacteria, Gut flora, Escherichia coli, Proteobacteria

4

Extracellular matrix provides critical signaling context to resident cells through mechanical and bioactive properties. To realize the potential of tissue engineering and regenerative medicine, biomaterials should allow for the independent control of these features. This study investigates a hydrogel system based on thiol-modified hyaluronic acid (HA-S) and polyethylene glycol diacrylate (PEGDA). The mechanical properties of HAS-PEGDA are dictated by two cytocompatible crosslinking reactions that occur at distinct time points: a rapid, Michael-type nucleophilic addition reaction between HA-thiols and PEG-acrylates and a prolonged maturation of disulfide crosslinks from remaining thiols. It is hypothesized that these reactions would enable the independent tuning of the mechanical and bioactive features of HAS-PEGDA. Rheological studies confirmed that initial gelation reached completion by 1 day, at which point the shear modulus was proportional to the concentration of PEGDA. Over time, the shear modulus evolved dramatically, and final stiffness depended on the availability of HA-thiols. The addition of PEG-monoacrylate (PEGMA) after the initial gelation occupied a percentage of remaining thiols to prevent disulfide crosslinking, decreasing the steady-state stiffness in a dose-dependent manner. A fraction of the PEGMA was then replaced with acrylated peptide ligands to introduce specific bioactivity to the otherwise non-cell-adhesive network. The degree of latent stiffening was controlled by the total amount of peptide-PEGMA, while adhesivity was tuned with the balance of bioactive and inactive peptides. The functional effects of the tunable mechanical and bioadhesive ligand properties were confirmed with assays of cell adhesion and morphology.

3

Inhalation of combustion-derived ultrafine particles (≤0.1 μm) has been found to be associated with pulmonary and cardiovascular diseases. However, correlation of the physicochemical properties of carbon-based particles such as surface charge and agglomeration state with adverse health effects has not yet been established, mainly due to limitations related to the detection of carbon particles in biological environments. The authors have therefore applied model particles as mimics of simplified particles derived from incomplete combustion, namely, carbon nanodots (CNDs) with different surface modifications and fluorescent properties. Their possible adverse cellular effects and their biodistribution pattern were assessed in a three-dimensional (3D) lung epithelial tissue model. Three different CNDs, namely, nitrogen, sulfur codoped CNDs ( N,S-CNDs) and nitrogen doped CNDs ( N-CNDs-1 and N-CNDs-2), were prepared by microwave-assisted hydrothermal carbonization using different precursors or different microwave systems. These CNDs were found to possess different chemical and photophysical properties. The surfaces of nanodots N-CNDs-1 and N-CNDs-2 were positively charged or neutral, respectively, arguably due to the presence of amine and amide groups, while the surfaces of N,S-CNDs were negatively charged, as they bear carboxylic groups in addition to amine and amide groups. Photophysical measurements showed that these three types of CNDs displayed strong photon absorption in the UV range. Both N-CNDs-1 and N,S-CNDs showed weak fluorescence emission, whereas N-CNDs-2 showed intense emission. A 3D human lung model composed of alveolar epithelial cells (A549 cell line) and two primary immune cells, i.e., macrophages and dendritic cells, was exposed to CNDs via a pseudo-air-liquid interface at a concentration of 100 μg/ml. Exposure to these particles for 24 h induced no harmful effect on the cells as assessed by cytotoxicity, cell layer integrity, cell morphology, oxidative stress, and proinflammatory cytokines release. The distribution of the CNDs in the lung model was estimated by measuring the fluorescence intensity in three different fractions, e.g., apical, intracellular, and basal, after 1, 4, and 24 h of incubation, whereby reliable results were only obtained for N-CNDs-2. It was shown that N-CNDs-2 translocate rapidly, i.e., >40% in the basal fraction within 1 h and almost 100% after 4 h, while ca. 80% of the N-CNDs-1 and N,S-CNDs were still located on the apical surface of the lung cells after 1 h. This could be attributed to the agglomeration behavior of N-CNDs-1 or N,S-CNDs. The surface properties of the N-CNDs bearing amino and amide groups likely induce greater uptake as N-CNDs could be detected intracellularly. This was less evident for N,S-CNDs, which bear carboxylic acid groups on their surface. In conclusion, CNDs have been designed as model systems for carbon-based particles; however, their small size and agglomeration behavior made their quantification by fluorescence measurement challenging. Nevertheless, it was demonstrated that the surface properties and agglomeration affected the biodistribution of the particles at the lung epithelial barrier in vitro.

3

Solid tumors are a structurally complex system, composed of many different cell types. The tumor microenvironment includes nonmalignant cell types that participate in complex interactions with tumor cells. The cross talk between tumor and normal cells is implicated in regulating cell growth, metastatic potential, and chemotherapeutic drug resistance. A new approach is required to interrogate and quantitatively characterize cell to cell interactions in this complex environment. Here, the authors have applied time-of-flight secondary ion mass spectrometry (ToF-SIMS) to analyze Myc-induced pancreatic β cell islet tumors. The high mass resolution and micron spatial resolution of ToF-SIMS allows detection of metabolic intermediates such as lipids and amino acids. Employing multivariate analysis, specifically, principal component analysis, the authors show that it is possible to chemically distinguish cancerous islets from normal tissue, in addition to intratumor heterogeneity. These heterogeneities can then be imaged and investigated using another modality such as sum harmonic generation microscopy. Using these techniques with a specialized mouse model, the authors found significant metabolic changes occurring within β cell tumors and the surrounding tissues. Specific alterations of the lipid, amino acid, and nucleotide metabolism were observed, demonstrating that ToF-SIMS can be utilized to identify large-scale changes that occur in the tumor microenvironment and could thereby increase the understanding of tumor progression and the tumor microenvironment.

3

Synthetic polymers, nanoparticles, and carbon-based materials have great potential in applications including drug delivery, gene transfection, in vitro and in vivo imaging, and the alteration of biological function. Nature and humans use different design strategies to create nanomaterials: biological objects have emerged from billions of years of evolution and from adaptation to their environment resulting in high levels of structural complexity; in contrast, synthetic nanomaterials result from minimalistic but controlled design options limited by the authors' current understanding of the biological world. This conceptual mismatch makes it challenging to create synthetic nanomaterials that possess desired functions in biological media. In many biologically relevant applications, nanomaterials must enter the cell interior to perform their functions. An essential transport barrier is the cell-protecting plasma membrane and hence the understanding of its interaction with nanomaterials is a fundamental task in biotechnology. The authors present open questions in the field of nanomaterial interactions with biological membranes, including: how physical mechanisms and molecular forces acting at the nanoscale restrict or inspire design options; which levels of complexity to include next in computational and experimental models to describe how nanomaterials cross barriers via passive or active processes; and how the biological media and protein corona interfere with nanomaterial functionality. In this Perspective, the authors address these questions with the aim of offering guidelines for the development of next-generation nanomaterials that function in biological media.

Concepts: DNA, Gene, Cell, Molecular biology, Biology, Life, Cell membrane, Nanotechnology

2

Frogs capture their prey with a highly specialized tongue. Recent studies indicate this tongue is covered with fibril-forming mucus that acts as a pressure sensitive adhesive. However, no analysis of the interfacial chemistry of frog tongue mucus has been performed. The goal of this study is to examine the chemical structure of the surface of mucus after a tongue strike. Previous studies of mucus from other animals suggest that mucus from a frog’s tongue consists of mucins-serine-, threonine-, and proline-rich glycoproteins. Therefore, the authors expect to observe chemical bonds associated with glycoproteins, as well as fibrils formed at the mucus-tongue interface. To test this hypothesis, they collected both near-edge x-ray absorption fine structure (NEXAFS) microscopy images and sum frequency generation (SFG) vibrational spectra from layers of mucus left after frog tongue strikes on cleaned glass slides. NEXAFS imaging demonstrates a uniform distribution of amide, hydroxyl, and carbon-carbon bonds across the mucus surface. Difference spectra of individual N1s and C1s K-edge spectra pulled from these images indicate a structure consistent with fibril formation as well as disorder of oligosaccharide groups near the mucus surface. C-H region SFG spectra reveal surface active modes which likely stem from serine and threonine within the mucin protein. Combined, this work suggests that glycoproteins are well-ordered at the mucus-tongue interface.

2

The skin properties, structure, and performance can be influenced by many internal and external factors, such as age, gender, lifestyle, skin diseases, and a hydration level that can vary in relation to the environment. The aim of this work was to demonstrate the multifaceted influence of water on human skin through a combination of in vivo confocal Raman spectroscopy and images of volar-forearm skin captured with the laser scanning confocal microscopy. By means of this pilot study, the authors have both qualitatively and quantitatively studied the influence of changing the depth-dependent hydration level of the stratum corneum (SC) on the real contact area, surface roughness, and the dimensions of the primary lines and presented a new method for characterizing the contact area for different states of the skin. The hydration level of the skin and the thickness of the SC increased significantly due to uptake of moisture derived from liquid water or, to a much lesser extent, from humidity present in the environment. Hydrated skin was smoother and exhibited higher real contact area values. The highest rates of water uptake were observed for the upper few micrometers of skin and for short exposure times.

Concepts: Spectroscopy, Water, Laser, Sociology, Skin, Liquid, Raman spectroscopy, Friction