SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Biochemical and biophysical research communications

27

Long noncoding RNAs (lncRNAs) are key regulators of diverse biological processes such as transcriptional regulation, cell growth and differentiation. Previous studies have demonstrated that the lncRNA-ANCR (anti-differentiation ncRNA) is required to maintain the undifferentiated cell state within the epidermis. However, little is known about whether ANCR regulates osteoblast differentiation. In this study, we found that the ANCR expression level is significantly decreased during hFOB1.19 cell differentiation. ANCR-siRNA blocks the expression of endogenous ANCR, resulting in osteoblast differentiation, whereas ANCR overexpression is sufficient to inhibit osteoblast differentiation. We further demonstrated that ANCR is associated with enhancer of zeste homolog 2 (EZH2) and that this association results in the inhibition of both Runx2 expression and subsequent osteoblast differentiation. These data suggest that ANCR is an essential mediator of osteoblast differentiation, thus offering a new target for the development of therapeutic agents to treat bone diseases.

Concepts: DNA, Gene, Gene expression, Developmental biology, Bone marrow, Regulation of gene expression, Cellular differentiation, Long noncoding RNA

27

A recently proposed therapeutic approach for lysosomal storage disorders (LSDs) relies upon the ability of transcription factor EB (TFEB) to stimulate autophagy and induce lysosomal exocytosis leading to cellular clearance. This approach is particularly attractive in Glycogen Storage Disease type II (a severe metabolic myopathy and a paradigm for LSDs, also called Pompe disease) as the currently available therapy, replacement of the missing enzyme acid alpha-glucosidase, fails to reverse skeletal muscle pathology. Pompe disease is characterized by both lysosomal abnormality and dysfunctional autophagy. Here we show that TFEB is a viable therapeutic target in Pompe disease: overexpression of TFEB in a newly established conditionally immortalized skeletal muscle cell model reduced glycogen load and lysosomal size; and in the muscle fibers of GFP-LC3 Pompe disease mouse model significantly increased the motility of lysosomes in the fibers, and stimulated the fusion between lysosomes and autophagosomes under stress. Hence, modulation of TFEB activity holds promise for the development of a better therapy. In addition, the newly developed mouse and cell models have many potential applications such as large-scale drug screening for Pompe disease.

Concepts: Gene expression, Metabolism, Muscle, Cardiac muscle, Glycogen, Skeletal muscle, Glycogen storage disease, Glycogen storage disease type II

27

The redox potential of type I copper in the Escherichia coli multicopper oxidase CueO was shifted in the positive or negative direction as a result of the single, double, and triple mutations in the first and second coordination spheres: the formation of the NH—S(-)(Cys500 ligand) hydrogen bond, the breakdown of the NH(His443 ligand)—O(-)(Asp439) hydrogen bond, and the substitution of the Met510 ligand for the non-coordinating Leu or coordinating Gln. Laccase activities of CueO were maximally enhanced 140-fold by virtue of the synergistic effect of mild mutations at and at around the ligand groups to type I copper.

Concepts: DNA, Iron, Hydrogen, Redox, Escherichia coli, Ligand, Chemical bonding, Coordination sphere

26

Polystyrene is a common substrate material for protein adsorption in biosensors and bioassays. Here, we present a new method for multilayered, site-directed immobilization of antibody on polystyrene surface through the linkage of a genetically engineered ligand and the assembly of staphylococcal protein A (SPA) with immunoglobulin G (IgG). In this method, antibodies were stacked on polystyrene surface layer by layer in a potential three-dimensional way and exposed the analyte-binding sites well. Enzyme-linked immunosorbent assay (ELISA) revealed that the new method showed a 32-fold higher detection sensitivity compared with the conventional one. Pull-down assay and Western blot analysis further confirmed that it is different from the ones of monolayer adsorption according to the comparison of adsorption capacity. The differentiated introduction of functional ligands, which is the key of this method, might offer a unique idea as a way to interfere with the dynamic behavior of a protein complex during the process of adsorption.

Concepts: Immune system, Antibody, Immunology, Western blot, ELISA, ELISPOT, HIV test, Protein A/G

26

The acrosome is a specialized organelle that covers the anterior part of the sperm nucleus and plays an essential role in mammalian fertilization. However, the regulatory mechanisms controlling acrosome biogenesis and acrosome exocytosis during fertilization are largely unknown. Equatorin (Eqtn) is a membrane protein that is specifically localized to the acrosomal membrane. In the present study, the physiological functions of Eqtn were investigated using a gene knockout mouse model. We found that Eqtn(-/-) males were subfertile. Only approximately 50% of plugged females were pregnant after mating with Eqtn(-/-) males, whereas more than 90% of plugged females were pregnant after mating with control males. Sperm and acrosomes from Eqtn(-/-) mice presented normal motility and morphology. However, the fertilization and induced acrosome exocytosis rates of Eqtn-deficient sperm were dramatically reduced. Further studies revealed that the Eqtn protein might interact with Syntaxin1a and SNAP25, but loss of Eqtn did not affect the protein levels of these genes. Therefore, our study demonstrates that Eqtn is not essential for acrosome biogenesis but is required for the acrosome reaction. Eqtn is involved in the fusion of the outer acrosomal membrane and the sperm plasma membrane during the acrosome reaction, most likely via an interaction with the SNARE complex.

Concepts: Gene, Cell, Reproduction, Organelle, Spermatozoon, Knockout mouse, Acrosome, Acrosome reaction

25

A major hurdle to the widespread application of light sheet microscopy is the lack of versatile and non-intrusive sample holders that are adaptable to a variety of biological samples for live imaging. To overcome this limitation, we present herein the application of 3D printing to the fabrication of a fully customizable casting kit. 3D printing enables facile preparation of hydrogel sample holders adaptable to any shape and number of specimen. As an example, we present the use of this device to produce a four-sample holder adapted to parallel live monitoring of multicellular tumor spheroid growth. To share our solution with the light sheet microscopy community, all files necessary to produce or customize sample holders are freely available online.

Concepts: Sample, Biology, Printing, Inkjet printer, Printing press, 3D printing, Holder

24

Activation of the innate immune system involves a series of events designed to counteract the initial insult followed by the clearance of debris and promotion of healing. Aberrant regulation can lead to systemic inflammatory response syndrome, multiple organ failure, and chronic inflammation. A better understanding of the innate immune response may help manage complications while allowing for proper immune progression. In this study, the ability of several classes of anti-inflammatory drugs to affect LPS-induced cytokine and prostaglandin release from peripheral blood mononuclear cells (PBMC) was evaluated. PBMC were cultured in the presence of dexamethasone (DEX), ibuprofen (IBU), and the low molecular weight fraction of 5% albumin (LMWF5A) followed by stimulation with LPS. After 24 h, TNFα, PGE2, and 15d-PGJ2 release was determined by ELISA. Distinct immunomodulation patterns emerged following LPS stimulation of PBMC in the presence of said compounds. DEX, a steroid with strong immunosuppressive properties, reduced TNFα, PGE2, and 15d-PGJ2 release. IBU caused significant reduction in prostaglandin release while TNFα release was unchanged. An emerging biologic with known anti-inflammatory properties, LMWF5A significantly reduced TNFα release while enhancing PGE2 and 15d-PGJ2 release. Incubating LMWF5A together with IBU negated this observed increased prostaglandin release without affecting the suppression of TNFα release. Additionally, LMWF5A caused an increase in COX-2 transcription and translation. LMWF5A exhibited a unique immune modulation pattern in PBMC, disparate from steroid or NSAID administration. This enhancement of prostaglandin release (specifically 15d-PGJ2), in conjunction with a decrease in TNFα release, suggests a switch that favors resolution and decreased inflammation.

Concepts: Immune system, Inflammation, Innate immune system, Immunology, Immunity, Anti-inflammatory, Chemokine, Eicosanoid

24

Hypothalamic endoplasmic reticulum (ER) stress is known to be increased in obesity. Induction of ER stress on hypothalamic neurons has been reported to cause hypothalamic neuronal apoptosis and malfunction of energy balance, leading to obesity. Carbenoxolone is an 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor that converts inactive glucocorticoid into an active form. In addition to its metabolic effect via enzyme inhibitory action, carbenoxolone has shown anti-apoptotic activity in several studies. In this study, the direct effects of carbenoxolone on ER stress and cell death in hypothalamic neurons were investigated. Carbenoxolone attenuated tunicamycin induced ER stress-mediated molecules such as spliced XBP1, ATF4, ATF6, CHOP, and ROS generation. In vivo study also revealed that carbenoxolone decreased tunicamycin-induced ER stress in the hypothalamus. In conclusion, the results of this study show that carbenoxolone has protective effects against tunicamycin induced-ER stress and apoptosis in hypothalamic neurons, suggesting its direct protective effects against obesity. Further study is warranted to clarify the effects of carbenoxolone on hypothalamic regulation of energy balance in obesity.

Concepts: Protein, Brain, Endoplasmic reticulum, In vivo, Action potential, Leptin, Dopamine, Neuroendocrine

24

2S albumins, the seed storage proteins, are the primary sources of carbon and nitrogen and are involved in plant defense. The mature form of Moringa oleifera (M. oleifera), a chitin binding protein isoform 3-1 (mMo-CBP3-1) a thermostable antifungal, antibacterial, flocculating 2S albumin is widely used for the treatment of water and is potentially interesting for the development of both antifungal drugs and transgenic crops. The crystal structure of mMo-CBP3-1 determined at 1.7 Å resolution demonstrated that it is comprised of two proteolytically processed α-helical chains, stabilized by four disulfide bridges that is stable, resistant to pH changes and has a melting temperature ™ of approximately 98 °C. The surface arginines and the polyglutamine motif are the key structural factors for the observed flocculating, antibacterial and antifungal activities. This represents the first crystal structure of a 2S albumin and the model of the pro-protein indicates the structural changes that occur upon formation of mMo-CBP3-1 and determines the structural motif and charge distribution patterns for the diverse observed activities.

Concepts: Proteins, Protein, Protein structure, Molecular biology, Disulfide bond, Solid, Moringa oleifera, Seed storage proteins

23

Due to higher transmembrane potential of tumor cells, enhanced accumulation of cationic drugs in tumor mitochondria has been attributed to a higher (more negative inside) mitochondrial transmembrane potential compared with normal cells, emerging researchers are focus on developing mitochondria-targeted antitumor drugs. Coumarins showed great potential on antitumor, but mitochondria-targeted coumarin derivatives have not been reported. In the present study, we synthesized mitochondria-targeted-methyl coumarin (mito-methyl coumarin) through coupling 6-methyl coumarin to TPP. We confirmed that mito-methyl coumarin inhibited HeLa cells proliferation selectively, induced ROS generation, reduced mitochondrial membrane potential, promoted mitochondria Ca(2+) accumulation, decreased mitochondria mass and induced HeLa cells apoptosis, but methyl coumarin did not. These results demonstrate that we succeed in synthesizing a novel mitochondria-targeted drug, mito-methyl coumarin, which is effective in inhibiting HeLa cells proliferation and inducing HeLa cells apoptosis through promoting ROS generation and mitochondria Ca(2+) accumulation.

Concepts: DNA, Cancer, Adenosine triphosphate, Mitochondrion, Cytosol, Organelle, Cytoplasm, Citric acid cycle