SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Asian spine journal

5

Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis.

Concepts: Osteoporosis, Pharmacology, Breast cancer, Menopause, Estrogen, Estrogen receptor, Tamoxifen, Selective estrogen receptor modulator

2

1

0

0

Anterior cervical discectomy and fusion (ACDF) immobilizes surgical segments and can lead to the development of adjacent segment degeneration and adjacent segment disease. Thus, cervical total disc replacement (CTDR) has been developed with the aim to preserve the biomechanics of spine. However, heterotopic ossification (HO), a complication following CTDR, can reduce the segmental range of motion (ROM) and defects the motion-preservation benefit of CTDR. The pathological process of HO in CTDR remains unknown. HO has been suggested to be a self-defense mechanism in response to the non-physiological biomechanics of the cervical spine following CTDR. The current literature review is concerned with the association between the biomechanical factors and HO formation and the clinical significance of HO in CTDR. Endplate coverage, disc height, segmental angle, and center of rotation may be associated with the development of HO. The longer the follow-up, the higher the rate of ROM-limiting HO. Regardless of the loss of motion-preservation benefit of CTDR in patients with HO, CTDR confers patients with a motion-preservation period before the development of ROM-limiting HO. This may delay the development of adjacent segment degeneration compared with ACDF. Future clinical studies should explore the association between HO and changes in biomechanical factors of the cervical spine.

0

0

0

0

0