SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Archiv der Pharmazie

28

A new scaffold of hydrazothiazoles has been designed as monoamine oxidase (MAO) inhibitors combining the hydrazine moiety of iproniazid and the thiazole nucleus of glitazones, a class of peroxisome proliferator-activated receptor (PPAR)γ agonists recently co-crystallized with human MAO-B. The resulting derivatives were synthesized and assayed to evaluate their in vitro activity against both the A and B isoforms of hMAO. All compounds were shown to be selective hMAO-B inhibitors with IC(50) values in the low micromolar/high nanomolar range. Such results suggest that the hydrazothiazole scaffold could be considered as an interesting pharmacophore for the future design of new lead compounds as coadjuvants for the treatment of neurodegenerative diseases.

Concepts: Peroxisome proliferator-activated receptor, Neuroscience, Oxidase, Serotonin, Nuclear receptor, Monoamine oxidase, Monoamine oxidase inhibitor, Monoamine oxidase B

28

In this paper, the isolation of dillapiole (1) from Piper aduncum was reported as well as the semi-synthesis of two phenylpropanoid derivatives [di-hydrodillapiole (2), isodillapiole (3)], via reduction and isomerization reactions. Also, the compounds' molecular properties (structural, electronic, hydrophobic, and steric) were calculated and investigated to establish some preliminary structure-activity relationships (SAR). Compounds were evaluated for in vitro antileishmanial activity and cytotoxic effects on fibroblast cells. Compound 1 presented inhibitory activity against Leishmania amazonensis (IC(50)  = 69.3 µM) and Leishmania brasiliensis (IC(50)  = 59.4 µM) and induced cytotoxic effects on fibroblast cells mainly in high concentrations. Compounds 2 (IC(50)  = 99.9 µM for L. amazonensis and IC(50)  = 90.5 µM for L. braziliensis) and 3 (IC(50)  = 122.9 µM for L. amazonensis and IC(50)  = 109.8 µM for L. brasiliensis) were less active than dillapiole (1). Regarding the molecular properties, the conformational arrangement of the side chain, electronic features, and the hydrophilic/hydrophobic balance seem to be relevant for explaining the antileishmanial activity of dillapiole and its analogues.

Concepts: Fibroblast, In vitro fertilisation, In vitro, Chemical compound, Piper aduncum, Piper

27

In accordance with our antiviral drug development attempt, acylhydrazone derivatives bearing amino acid side chains were synthesized for the evaluation of their antiviral activity against various types of viruses. Among these compounds, 8(S) , 11(S) , and 12(S) showed anti-HIV-1 activity with a 50% inhibitory concentration (IC(50) ) = 123.8 µM (selectivity index, SI > 3), IC(50)  = 12.1 µM (SI > 29), IC(50)  = 17.4 µM (SI > 19), respectively. Enantiomers 8® , 11® , and 12® were inactive against the HIV-1 strain III(B) . Hydrazones 8(S) , 11(S) , and 12(S) which were active against HIV-1 wild type showed no inhibition against a double mutant NNRTI-resistant strain (K103N;Y181C). Molecular docking calculations of R- and S-enantiomers of 8, 11, and 12 were performed using the hydrazone-bound novel site of HIV-1 RT.

Concepts: Gene, Amino acid, Virus, Influenza, Computational chemistry, Enzyme inhibitor, Molecular modelling, Molecular mechanics

25

The oncoprotein cytotoxic associated gene A (CagA) of Helicobacter pylori plays a pivotal role in the development of gastric cancer, so it has been an important target for anti-H. pylori drugs. Conventional drugs are currently being implemented against H. pylori. The inhibitory role of plant metabolites like curcumin against H. pylori is still a major scientific challenge. Curcumin may represent a novel promising drug against H. pylori infection without producing side effects. In the present study, a comparative analysis between curcumin and conventional drugs (clarithromycin, amoxicillin, pantoprazole, and metronidazole) was carried out using databases to investigate the potential of curcumin against H. pylori targeting the CagA oncoprotein. Curcumin was filtered using Lipinski’s rule of five and the druglikeness property for evaluation of pharmacological properties. Subsequently, molecular docking was employed to determine the binding affinities of curcumin and conventional drugs to the CagA oncoprotein. According to the results obtained from FireDock, the binding energy of curcumin was higher than those of amoxicillin, pantoprazole, and metronidazole, except for clarithromycin, which had the highest binding energy. Accordingly, curcumin may become a promising lead compound against CagA+ H. pylori infection.

Concepts: Pharmacology, Cancer, Bacteria, Stomach, Helicobacter pylori, Helicobacter, Clarithromycin, Gastritis

23

(Arylalkyl)azoles are a class of antiepileptic compounds including nafimidone, denzimol, and loreclezole (LRZ). Nafimidone and denzimol are thought to inhibit voltage-gated sodium channels (VGSCs) and enhance γ-aminobutyric acid (GABA)-mediated response. LRZ, a positive allosteric modulator of A-type GABA receptors (GABAA Rs), was reported to be sensitive to Asn265 of the β2/β3 subunit. Here, we report new N-[1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethylidene]hydroxylamine esters showing anticonvulsant activity in animal models, including the 6-Hz psychomotor seizure test, a model for therapy-resistant partial seizure. We performed molecular docking studies for our active compounds using GABAA R and VGSC homology models. They predicted high affinity to the benzodiazepine binding site of GABAA R in line with the experimental results. Also, the binding mode and interactions of LRZ in its putative allosteric binding site of GABAA R is elucidated.

Concepts: Ligand, Epilepsy, Anticonvulsant, Status epilepticus, Diazepam, Benzodiazepine, GABAA receptor, Barbiturate

22

A new series of 1,2-diaryl-4-substituted-benzylidene-5(4H)-imidazolone derivatives 4a-l was synthesized. Their structures were confirmed by different spectroscopic techniques (IR, 1 H NMR, DEPT-Q NMR, and mass spectroscopy) and elemental analyses. Their cytotoxic activities in vitro were evaluated against breast, ovarian, and liver cancer cell lines and also normal human skin fibroblasts. Cyclooxygenase (COX)-1, COX-2 and lipoxygenase (LOX) inhibitory activities were measured. The synthesized compounds showed selectivity toward COX-2 rather than COX-1, and the IC50 values (0.25-1.7 µM) were lower than that of indomethacin (IC50  = 9.47 µM) and somewhat higher than that of celecoxib (IC50  = 0.071 µM). The selectivity index for COX-2 of the oxazole derivative 4e (SI = 3.67) was nearly equal to that of celecoxib (SI = 3.66). For the LOX inhibitory activity, the new compounds showed IC50 values of 0.02-74.03 µM, while the IC50 of the reference zileuton was 0.83 µM. The most active compound 4c (4-chlorobenzoxazole derivative) was found to have dual COX-2/LOX activity. All the synthesized compounds were docked inside the active site of the COX-2 and LOX enzymes. They linked to COX-2 through the N atom of the azole scaffold, while CO of the oxazolone moiety was responsible for the binding to amino acids inside the LOX active site.

Concepts: Spectroscopy, Cell, Cancer, Amine, Proton, Cyclooxygenase, Chemical element, Deuterium

0

A series of 3-(7-azainodyl)-4-indolylmaleimides was designed, synthesized, and evaluated for their isocitrate dehydrogenase 1 (IDH1)/R132H inhibitory activities. Many compounds such as 11a, 11c, 11e, 11g, and 11s exhibited favorable inhibitory effects on IDH1/R132H and were highly selective against the wild-type IDH1. Evaluation of the biological activities at the cellular level showed that compounds 11a, 11c, 11e, 11g, and 11s could effectively suppress the production of 2-hydroxyglutaric acid in U87MG cells expressing IDH1/R132H. Preliminary structure-activity relationship (SAR) and molecular modeling studies were discussed based on the experimental data obtained. These findings may provide new insights into the development of novel IDH1/R132H inhibitors.

0

The introduction of tyrosine kinase inhibitors (TKIs) in the clinical management of oncological patients spread the light on the use of selective, rationally designed small molecules for the treatment of cancer. First-generation TKIs bared high response against these malignancies, although the unavoidable shadow of resistance limits their long-term efficacy. Non-small-cell lung cancer (NSCLC) accounts for 85% of lung cancer cases, and it is the first cause of cancer deaths worldwide for men and women. Traditional chemotherapy is marginally effective against this form, and erlotinib and gefitinib were introduced as first-line treatments based on the observation that the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK), is mutated in several cases and, thus, represents a druggable target. EGFR-mutant and anaplastic lymphoma kinase (ALK)-positive patients are more responsive to these treatments, even if secondary mutations causing resistance soon emerged. The efforts of medicinal chemists are currently oriented toward the development of new generations of TKIs overcoming these obstacles. We here overview the novel strategies from the point of view of the medicinal chemist: the rational structure-based drug design that led to the development of irreversible and non-ATP-competitive inhibitors. Such improvements parallel the novel therapeutic strategies adopted in the clinic, which are also discussed.

0

We report the synthesis of bromoindenoquinolines (15a-f) by Friedlander reactions in low yields (13-50%) and the conversion of the corresponding phenyl-substituted indenoquinoline derivatives 16-21 in high yields (80-96%) by Suzuki coupling reactions. To explore the structure-activity relationship (SAR), their inhibition potentials to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase cyctosolic (hCA I and II) enzymes were determined. Monophenyl (16-18) indenoquinolines significantly inhibited the AChE and BChE enzymes in ranges of IC50 37-57 nM and 84-93 nM, respectively, compared with their starting materials 15a-c and reference compounds (galanthamine and tacrine). On the other hand, these novel arylated indenoquinoline-based derivatives were effective inhibitors of the BChE, hCA I and II, BChE and AChE enzymes with Ki values in the range of 37 ± 2.04 to 88640 ± 1990 nM for AChE, 120.94 ± 37.06 to 1150.95 ± 304.48 nM for hCA I, 267.58 ± 98.05 to 1568.16 ± 438.67 nM for hCA II, and 84 ± 3.86 to 144120 ± 2910 nM for BChE. As a result, monophenyl indenoquinolines 16-18 may have promising anti-Alzheimer drug potential and 3,8-dibromoindenoquinoline amine (15f) can be novel hCA I and hCA II enzyme inhibitors.

0

1,3-Oxazolidine-2-one is an important heterocyclic ring participating in the chemical structure of many drugs. In this research, 22 new amide/sulfonamide/thiourea derivatives (1-22) were obtained by the reaction of (S)-4-(4-aminobenzyl)-2(1H)-1,3-oxazolidinone with 4-substituted benzoyl chlorides, 4-substituted benzene sulfonyl chlorides, and 4-substituted phenyl isothiocyanates. The structures of all synthesized compounds were clarified by FT-IR, NMR, and mass spectroscopic and elemental analysis techniques. The synthesized compounds were screened for their antimicrobial activity. Antimicrobial susceptibility and cellular physiology were evaluated using the microbroth dilution assay and the flow cytometry method. As a result, it was determined that compound 16 displayed better antimicrobial activity than chloramphenicol against Gram-positive bacteria, especially Staphylococcus aureus. In order to understand the mechanism of effect of the compounds on the cell membrane, fluorescence microscopy was used. Cell membrane damage of the Gram positive bacteria treated with compound 16 was observed as a result of intense staining with propidium iodide. In addition, genotoxicity, cytotoxicity, and absorption, distribution, metabolism, and excretion (ADME) parameters of compound 16 were examined and it was found as non-mutagenic and non-cytotoxic at the concentration at which it showed antimicrobial activity. According to the calculated ADME parameters and drug likeness scores, the compounds can be good drug candidates, especially compound 16.