SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Archiv der Pharmazie

28

A new scaffold of hydrazothiazoles has been designed as monoamine oxidase (MAO) inhibitors combining the hydrazine moiety of iproniazid and the thiazole nucleus of glitazones, a class of peroxisome proliferator-activated receptor (PPAR)γ agonists recently co-crystallized with human MAO-B. The resulting derivatives were synthesized and assayed to evaluate their in vitro activity against both the A and B isoforms of hMAO. All compounds were shown to be selective hMAO-B inhibitors with IC(50) values in the low micromolar/high nanomolar range. Such results suggest that the hydrazothiazole scaffold could be considered as an interesting pharmacophore for the future design of new lead compounds as coadjuvants for the treatment of neurodegenerative diseases.

Concepts: Peroxisome proliferator-activated receptor, Neuroscience, Oxidase, Serotonin, Nuclear receptor, Monoamine oxidase, Monoamine oxidase inhibitor, Monoamine oxidase B

28

In this paper, the isolation of dillapiole (1) from Piper aduncum was reported as well as the semi-synthesis of two phenylpropanoid derivatives [di-hydrodillapiole (2), isodillapiole (3)], via reduction and isomerization reactions. Also, the compounds' molecular properties (structural, electronic, hydrophobic, and steric) were calculated and investigated to establish some preliminary structure-activity relationships (SAR). Compounds were evaluated for in vitro antileishmanial activity and cytotoxic effects on fibroblast cells. Compound 1 presented inhibitory activity against Leishmania amazonensis (IC(50)  = 69.3 µM) and Leishmania brasiliensis (IC(50)  = 59.4 µM) and induced cytotoxic effects on fibroblast cells mainly in high concentrations. Compounds 2 (IC(50)  = 99.9 µM for L. amazonensis and IC(50)  = 90.5 µM for L. braziliensis) and 3 (IC(50)  = 122.9 µM for L. amazonensis and IC(50)  = 109.8 µM for L. brasiliensis) were less active than dillapiole (1). Regarding the molecular properties, the conformational arrangement of the side chain, electronic features, and the hydrophilic/hydrophobic balance seem to be relevant for explaining the antileishmanial activity of dillapiole and its analogues.

Concepts: Fibroblast, In vitro fertilisation, In vitro, Chemical compound, Piper aduncum, Piper

27

In accordance with our antiviral drug development attempt, acylhydrazone derivatives bearing amino acid side chains were synthesized for the evaluation of their antiviral activity against various types of viruses. Among these compounds, 8(S) , 11(S) , and 12(S) showed anti-HIV-1 activity with a 50% inhibitory concentration (IC(50) ) = 123.8 µM (selectivity index, SI > 3), IC(50)  = 12.1 µM (SI > 29), IC(50)  = 17.4 µM (SI > 19), respectively. Enantiomers 8® , 11® , and 12® were inactive against the HIV-1 strain III(B) . Hydrazones 8(S) , 11(S) , and 12(S) which were active against HIV-1 wild type showed no inhibition against a double mutant NNRTI-resistant strain (K103N;Y181C). Molecular docking calculations of R- and S-enantiomers of 8, 11, and 12 were performed using the hydrazone-bound novel site of HIV-1 RT.

Concepts: Gene, Amino acid, Virus, Influenza, Computational chemistry, Enzyme inhibitor, Molecular modelling, Molecular mechanics

25

The oncoprotein cytotoxic associated gene A (CagA) of Helicobacter pylori plays a pivotal role in the development of gastric cancer, so it has been an important target for anti-H. pylori drugs. Conventional drugs are currently being implemented against H. pylori. The inhibitory role of plant metabolites like curcumin against H. pylori is still a major scientific challenge. Curcumin may represent a novel promising drug against H. pylori infection without producing side effects. In the present study, a comparative analysis between curcumin and conventional drugs (clarithromycin, amoxicillin, pantoprazole, and metronidazole) was carried out using databases to investigate the potential of curcumin against H. pylori targeting the CagA oncoprotein. Curcumin was filtered using Lipinski’s rule of five and the druglikeness property for evaluation of pharmacological properties. Subsequently, molecular docking was employed to determine the binding affinities of curcumin and conventional drugs to the CagA oncoprotein. According to the results obtained from FireDock, the binding energy of curcumin was higher than those of amoxicillin, pantoprazole, and metronidazole, except for clarithromycin, which had the highest binding energy. Accordingly, curcumin may become a promising lead compound against CagA+ H. pylori infection.

Concepts: Pharmacology, Cancer, Bacteria, Stomach, Helicobacter pylori, Helicobacter, Clarithromycin, Gastritis

22

A new series of 1,2-diaryl-4-substituted-benzylidene-5(4H)-imidazolone derivatives 4a-l was synthesized. Their structures were confirmed by different spectroscopic techniques (IR, 1 H NMR, DEPT-Q NMR, and mass spectroscopy) and elemental analyses. Their cytotoxic activities in vitro were evaluated against breast, ovarian, and liver cancer cell lines and also normal human skin fibroblasts. Cyclooxygenase (COX)-1, COX-2 and lipoxygenase (LOX) inhibitory activities were measured. The synthesized compounds showed selectivity toward COX-2 rather than COX-1, and the IC50 values (0.25-1.7 µM) were lower than that of indomethacin (IC50  = 9.47 µM) and somewhat higher than that of celecoxib (IC50  = 0.071 µM). The selectivity index for COX-2 of the oxazole derivative 4e (SI = 3.67) was nearly equal to that of celecoxib (SI = 3.66). For the LOX inhibitory activity, the new compounds showed IC50 values of 0.02-74.03 µM, while the IC50 of the reference zileuton was 0.83 µM. The most active compound 4c (4-chlorobenzoxazole derivative) was found to have dual COX-2/LOX activity. All the synthesized compounds were docked inside the active site of the COX-2 and LOX enzymes. They linked to COX-2 through the N atom of the azole scaffold, while CO of the oxazolone moiety was responsible for the binding to amino acids inside the LOX active site.

Concepts: Spectroscopy, Cell, Cancer, Amine, Proton, Cyclooxygenase, Chemical element, Deuterium

0

The design, synthesis, structure-activity relationship, and biological activity of 2,4-thiazolidinedione derivatives as peroxisome proliferator-activated receptor-γ (PPAR-γ) modulators for antidiabetic activity are reported. Fifteen 2,4-thiazolidinedione derivatives clubbed with pyrazole moiety were docked into the ligand binding domain of PPAR-γ by the Glide XP module of Schrodinger. Eight derivatives (5a, 5b, 5d, 5f, 5i, 5l, 5n, 5o) having Glide XP scores > -8 as compared to the standard drug, rosiglitazone (Glide XP score = -9.165), showed almost similar interaction with the amino acids such as HIS 449, TYR 473, TYR 327, HIS 323, and SER 289 in the molecular docking studies. These eight derivatives were further screened for PPAR-γ transactivation and in vivo blood glucose lowering activity in the streptozotocin-induced diabetic rat model. Compounds 5o, 5n, 5a, 5i, and 5b showed 52.06, 51.30, 48.65, 43.13, and 40.36% PPAR-γ transactivation as compared to the reference drugs rosiglitazone and pioglitazone with 85.30 and 65.22% transactivation, respectively. The data analysis showed significant blood glucose lowering effects (hypoglycemia) of compounds 5o, 5n, and 5a (140.1 ± 4.36, 141.4 ± 6.15, and 150.7 ± 4.15, respectively), along with reference drugs pioglitazone (135.2 ± 4.91) and rosiglitazone (141.1 ± 5.88) as compared to the diabetic control. Furthermore, the most potent compound 5o also elevated the PPAR-γ gene expression by 2.35-fold as compared to rosiglitazone (1.27-fold) and pioglitazone (1.6-fold). It also significantly lowered the AST, ALT, and ALP levels and caused no damage to the liver.

Concepts: Gene, Amino acid, Amine, Diabetes mellitus, In vivo, Anti-diabetic drug, In vitro, Thiazolidinedione

0

A series of benzoxazole derivatives and some possible primary metabolites were evaluated as anticancer agents. In vitro anti-proliferative activities of the compounds were tested using the SRB assay on cancerous (HeLa) and non-cancerous (L929) cell lines. It was found that 17 of 21 tested compounds had cytotoxic activity on HeLa cells and the cytotoxic activities of the compounds were 15-700 times higher than on L929 cells. We generated two distinct pharmacophore models for the cytotoxic activities of the compounds on HeLa and L929 cells. While active compounds such as camptothecin and X8 fitted the two models generated for both cell lines, selective cytotoxic compounds such as XT3B fitted only the model generated for HeLa cells. Evaluation of the genotoxic activities of the cytotoxic compounds with the alkaline comet assay revealed that compounds X17 and XT3 showed strong genotoxic effects against HeLa cells at low concentrations whereas they had no genotoxic effect on L929 cells. Due to the selective ability for inducing DNA strand breaks only on cancerous cells, the compounds were identified as effective derivatives for anticancer candidates.

Concepts: DNA, Gene, Cell, Cancer, Oncology, Organism, Chemotherapy, Cell culture

0

The study explores the one-pot synthesis of novel α-aminonitriles by reacting 4-[(1H-benzimidazol-2-yl)methoxy]benzaldehyde, substituted anilines and sodium cyanide using a catalytic amount of copper dipyridine dichloride (CuPy2 Cl2 ) and employing the Strecker reaction under mild conditions. All the synthesized compounds were screened for antimicrobial and antitubercular activity. The promising lead compounds 4d and 4e were identified, with MIC values ranging between 3.9 and 7.8 µg/mL against different bacterial strains. Compounds 4c-e and 4g also showed good antifungal activities against the tested fungal strain. Among those tested, compound 4e exhibited excellent antitubercular activity (MIC 0.05 μg/mL) with a low level of cytotoxicity, suggesting that compound 4e is a promising lead for subsequent investigations in search for new antitubercular agents.

Concepts: Cell, Bacteria, Enzyme, Chemical reaction, Chemical element, Chemical synthesis, Synthesis, Silver

0

A series of novel phloroglucinol derivatives were designed, synthesized, characterized spectroscopically and tested for their inhibitory activity against selected metabolic enzymes, including α-glycosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCA I and II). These compounds displayed nanomolar inhibition levels and showed Ki values of 1.14-3.92 nM against AChE, 0.24-1.64 nM against BChE, 6.73-51.10 nM against α-glycosidase, 1.80-5.10 nM against hCA I, and 1.14-5.45 nM against hCA II.

Concepts: Carbon dioxide, Enzyme, Enzyme inhibitor, PH, Carbonic anhydrase, Enzymes, Bicarbonate, Acetylcholinesterase

0

A series of new indole derivatives 1-18 was synthesized and tested for their cytotoxic activity on a panel of 60 tumor cell lines. Additionally, molecular docking was carried out to study their binding pattern and binding affinity in the VEGFR-2 active site using sorafenib as a reference VEGFR-2 inhibitor. Based on the molecular docking results, compounds 5a, 5b, 6, 7, 14b, 18b, and 18c were selected to be evaluated for their VEGFR-2 inhibitory activity. Compound 18b exhibited a broad-spectrum antiproliferative activity on 47 cell lines, with GI % ranging from 31 to 82.5%. Moreover, compound 18b was the most potent VEGFR-2 inhibitor with an IC50 value of 0.07 μM, which is more potent than that of sorafenib (0.09 μM). A molecular docking study attributed the promising activity of this series to their hydrophobic interaction with the VEGFR-2 binding site hydrophobic side chains and their hydrogen bonding interaction with the key amino acids Glu885 and/or Asp1046.

Concepts: DNA, Protein, Oxygen, Cancer, Oncology, Chemotherapy, Atom, Enzyme inhibitor