SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Applied biochemistry and biotechnology

28

Qualitative and quantitative DNA-based methods were applied to detect genetically modified foods in samples from markets in the Kingdom of Saudi Arabia. Two hundred samples were collected from Al-Qassim, Riyadh, and Mahdina in 2009 and 2010. GMOScreen 35S and NOS test kits for the detection of genetically modified organism varieties in samples were used. The positive results obtained from GMOScreen 35S and NOS were identified using specific primer pairs. The results indicated that all rice samples gave negative results for the presence of 35S and NOS terminator. About 26 % of samples containing soybean were positive for 35S and NOS terminator and 44 % of samples containing maize were positive for the presence of 35S and/or NOS terminator. The results showed that 20.4 % of samples was positive for maize line Bt176, 8.8 % was positive for maize line Bt11, 8.8 % was positive for maize line T25, 5.9 % was positive for maize line MON 810, and 5.9 % was positive for StarLink maize. Twelve samples were shown to contain <3 % of genetically modified (GM) soy and 6 samples >10 % of GM soy. Four samples containing GM maize were shown to contain >5 % of GM maize MON 810. Four samples containing GM maize were shown to contain >1 % of StarLink maize. Establishing strong regulations and certified laboratories to monitor GM foods or crops in Saudi market is recommended.

Concepts: Saudi Arabia, Arabian Peninsula, Riyadh, Qualitative research, Maize, Genetically modified organism, Genetically modified food, Transgenic maize

28

Purified laccase from Trametes polyzona WR710-1 was used as biocatalyst for bisphenol A biodegradation and decolorization of synthetic dyes. Degradation of bisphenol A by laccase with or without redox mediator, 1-hydroxybenzotriazole (HBT) was studied. The quantitative analysis by HPLC showed that bisphenol A rapidly oxidized by laccase with HBT. Bisphenol A was completely removed within 3 h and 4-isopropenylphenol was found as the oxidative degradation product from bisphenol A when identified by GC-MS. All synthetic dyes used in this experiment, Bromophenol Blue, Remazol Brilliant Blue R, Methyl Orange, Relative Black 5, Congo Red, and Acridine Orange were decolorized by Trametes laccase and the percentage of decolorization increased when 2 mM HBT was added in the reaction mixture. This is the first report showing that laccase from T. polyzona is an affective enzyme having high potential for environmental detoxification, bisphenol A degradation and synthetic dye decolorization.

Concepts: Enzyme, Redox, Nicotinamide adenine dinucleotide, Dye, Triarylmethane dyes, Azo dyes, Acridine, Phthalocyanine

28

Sol/gel-derived silica gel was prepared at room temperature from tetraethyl orthosilicate precursor. The extracts of Terminalia chebula (Haritoki) were entrapped into the porous silica gel. Fourier transform infrared analysis revealed the proper adsorption of herbal values in the nanopores of the silica gel. Porosity was estimated by transmission electron microscope studies. The release kinetics of the extract in both 0.1 N HCl, pH 1.2, and Phosphate-buffer saline (PBS), pH 7.2, were determined using UV-Vis spectroscopy. Different dissolution models were applied to release data in order to evaluate the release mechanisms and kinetics. Biphasic release patterns were found in every formulation for both the buffer systems. The kinetics followed a zero-order equation for first 4 h and a Higuchi expression in a subsequent timeline in the case of 0.1 N HCl. In the case of PBS, the formulations showed best linearity with a first-order equation followed by Higuchi’s model. The sustained release of the extract predominantly followed diffusion and super case II transport mechanism. The release value was always above the minimum inhibitory concentration.

Concepts: Electron, Spectroscopy, Electron microscope, Scientific techniques, Fourier transform, Fourier analysis, Tetraethyl orthosilicate, Terminalia chebula

28

Staphylococcus aureus, a Gram-positive bacterium, can cause a range of illnesses from minor skin infections to life-threatening diseases, such as bacteraemia, endocarditis, meningitis, osteomyelitis, pneumonia, toxic shock syndrome and sepsis. Due to the emergence of antibiotic resistance strains, there is a need to develop of new class of antibiotics or drug for this pathogen. The phosphotransacetylase enzyme plays an important role in the acetate metabolism and found to be essential for the survival of the S. aureus. This enzyme was evaluated as a putative drug target for S. aureus by in silico analysis. The 3D structure of the phosphotransacetylase from S. aureus was modelled, using the 1TD9 chain ‘A’ from Bacillus subtilis as a template at the resolution of 2.75 Å. The generated model has been validated by PROCHECK, WHAT IF and SuperPose. The docking was performed by the Molegro virtual docker using the ZINC database generated ligand library. The ligand library was generated within the limitation of the Lipinski rule of five. Based on the dock-score, five molecules have been subjected to ADME/TOX analysis and subjected for pharmacophore model generation. The zinc IDs of the potential inhibitors are ZINC08442078, ZINC8442200, ZINC 8442087 and ZINC 8442184 and found to be pharmacologically active antagonist of phosphotransacetylase. The molecules were evaluated as no-carcinogenic and persistent molecule by START programme.

Concepts: Bacteria, Microbiology, Pneumonia, Staphylococcus aureus, Antibiotic resistance, Clindamycin, Toxic shock syndrome, Gram positive bacteria

28

An effective alkali pretreatment which affects the structural properties of cellulose (corn cob) has been studied. The pretreatment of corn cob was carried out with different combinations of alkali at varying temperatures. The most effective pretreatment of corn cob was achieved with 1 % alkali at 50 °C in 4 h. The crystallinity index (CrI) and specific surface area (SSA) of untreated corn cob was 39 % and 0.52 m(2)/g wherein after alkali pretreatment CrI decreased to 15 % and SSA increased to 3.32 m(2)/g. The fungal organism was identified as Penicillium pinophilum on the basis of ITS sequence. At 5 % substrate concentration using a complete cellulase from Penicillium pinophilum the hydrolysis of untreated corn cob with 5, 10 and 20 FPU/g enzyme loadings were 11 %, 13 % and 16 %, whereas after alkali treatment the hydrolysis increased to 78 %, 90 % and 100 %, respectively. Further hydrolytic potential of commercial cellulases viz. Accellerase™ 1,000, Palkofeel-30 and Palkocel-40 were investigated under similar conditions.

Concepts: Enzyme, Fungus, Starch, Cellulose, Hydrolysis, Cellulosic ethanol, Specific surface area, Cellulase

28

Hyaluronic acid is a naturally ionic polysaccharide with cancer cell selectivity. It is an ideal candidate material for delivery of anticancer agents. In this study, hyaluronic acid (HA) micro-hydrogel loaded with anticancer drugs was prepared by the biotin-avidin system approach. Firstly, carboxyl groups on HA were changed into amino groups with adipic acid dihydrazide (ADH) to graft with biotin by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride named as HA-biotin. When HA-biotin solution mixed with doxorubicin hydrochloride (DOX·HCl) was blended with neutravidin, the micro-hydrogels would be formed with DOX loading. If excess biotin was added into the microgel, it would be disjointed, and DOX will be released quickly. The results of the synthesis procedure were characterized by (1)H-NMR and FTIR; ADH and biotin have been demonstrated to graft on the HA molecule. A field emission scanning electron microscope was used to observe morphologies of HA micro-hydrogels. Furthermore, the in vitro DOX release results revealed that the release behaviors can be adjusted by adding biotin. Therefore, the HA micro-hydrogel can deliver anticancer drugs efficiently, and the rate of release can be controlled by biotin-specific bonding with the neutravidin. Consequently, the micro-hydrogel will perform the promising property of switching in the specific site in cancer therapy.

Concepts: DNA, Cancer, Breast cancer, Oncology, Chemotherapy, Scanning electron microscope, Doxorubicin, Anthracycline

28

Expressed sequence tags (ESTs) databases of 11 Musa complementary DNA libraries were retrieved from National Center of Biotechnology Information and used for mining simple sequence repeats (SSRs). Out of 21,056 unique ESTs, SSR regions were found only in 5,158 ESTs. Among these SSR containing ESTs, the occurrence of trinucleotide repeats are the most abundant followed by mono-, di-, tetra-, hexa-, and pentanucleotides. Moreover, this study showed that the rate of class II SSRs (<20 nucleotides) was higher than the class I SSRs (<20 nucleotides), and proportion of class I and II SSRs as abundant for tri-repeats. As a representative sample, primers were synthesized for 24 ESTs, carrying >12 nucleotides of SSR region, and tested among the various genomic group of Musa accessions. The result showed that 88 % of primers were functional primers, and 43 % are showing polymorphism among the Musa accessions. Transferability studies of Musa EST-SSRs among the genera of the order Zingiberales exhibited 100 and 58 % transferability in Musaceae and Zingiberaceae, respectively. The sequence comparison of SSR regions among the different Musa accessions confirmed that polymorphism is mainly due to the variation in repeat length. High percentage of cross-species, cross-genera, and cross-family transferability also suggested that these Musa EST-SSR markers will be a valuable resource for the comparative mapping by developing COS markers, in evolutionary studies and in improvement of the members of Zingiberaceae and Musaceae.

Concepts: DNA, Genetics, Gene expression, Genomics, Expressed sequence tag, Complementary DNA, Class II railroad, Zingiberales

28

Production of the lignocellulose-degrading enzymes endo-1,4-β-glucanase, 1,4-β-glucosidase, cellobiohydrolase, endo-1,4-β-xylanase, 1,4-β-xylosidase, Mn peroxidase, and laccase was characterized in a common wood-rotting fungus Fomes fomentarius, a species able to efficiently decompose dead wood, and compared to the production in eight other fungal species. The main aim of this study was to characterize the 1,4-β-glucosidase produced by F. fomentarius that was produced in high quantities in liquid stationary culture (25.9 U ml(-1)), at least threefold compared to other saprotrophic basidiomycetes, such as Rhodocollybia butyracea, Hypholoma fasciculare, Irpex lacteus, Fomitopsis pinicola, Pleurotus ostreatus, Piptoporus betulinus, and Gymnopus sp. (between 0.7 and 7.9 U ml(-1)). The 1,4-β-glucosidase enzyme was purified to electrophoretic homogeneity by both anion-exchange and size-exclusion chromatography. A single 1,4-β-glucosidase was found to have an apparent molecular mass of 58 kDa and a pI of 6.7. The enzyme exhibited high thermotolerance with an optimum temperature of 60 °C. Maximal activity was found in the pH range of 4.5-5.0, and K (M) and V (max) values were 62 μM and 15.8 μmol min(-1) l(-1), respectively, when p-nitrophenylglucoside was used as a substrate. The enzyme was competitively inhibited by glucose with a K (i) of 3.37 mM. The enzyme also acted on p-nitrophenylxyloside, p-nitrophenylcellobioside, p-nitrophenylgalactoside, and p-nitrophenylmannoside with optimal pH values of 6.0, 3.5, 5.0, and 4.0-6.0, respectively. The combination of relatively low molecular mass and low K (M) value make the 1,4-β-glucosidase a promising enzyme for biotechnological applications.

Concepts: Bacteria, Enzyme, Fungus, PH, PH indicator, Fomitopsidaceae, Fomes fomentarius, Fungi of Europe

27

The search for new sources of natural pigments has increased, mainly because of the toxic effects caused by synthetic dyes used in food, pharmaceutical, textile, and cosmetic industries. Fungi provide a readily available alternative source of natural pigments. In this context, the fungi Penicillium chrysogenum IFL1 and IFL2, Fusarium graminearum IFL3, Monascus purpureus NRRL 1992, and Penicillium vasconiae IFL4 were selected as pigments producers. The fungal identification was performed using ITS and part of the β-tubulin gene sequencing. Almost all fungi were able to grow and produce water-soluble pigments on agro-industrial residues, with the exception of P. vasconiae that produced pigments only on potato dextrose broth. The production of yellow pigments was predominant and the two strains of P. chrysogenum were the largest producers. In addition, the production of pigments and mycotoxins were evaluated in potato dextrose agar using TOF-MS and TOF-MS/MS. Metabolites as roquefortine C, chrysogine were found in both extracts of P. chrysogenum, as well fusarenone X, diacetoxyscirpenol, and neosolaniol in F. graminearum extract. In the M. purpureus extract, the pigments monascorubrin, rubropunctatin, and the mycotoxin citrinin were found. The crude filtrates have potential to be used in the textile industry; nevertheless, additional pigment purification is required for food and pharmaceutical applications.

Concepts: Fungus, Mycotoxin, Dye, Pigment, Ascomycota, Penicillium, Monascus purpureus, Mold

27

Glycosylation of flavonoids is mediated by family 1 uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs). Until date, there are few reports on functionally characterized flavonoid glycosyltransferases from Withania somnifera. In this study, we cloned the glycosyltransferase gene from W. somnifera (UGT73A16) showing 85-92 % homology with UGTs from other plants. UGT73A16 was expressed as a His6-tagged fusion protein in Escherichia coli. Several compounds, including flavonoids, were screened as potential substrates for UGT73A16. HPLC analysis and hypsochromic shift indicated that UGT73A16 transfers a glucose molecule to several different flavonoids. Based on kinetic parameters, UGT73A16 shows more catalytic efficiency towards naringenin. Here, we explored UGT73A16 of W. somnifera as whole cell catalyst in E. coli. We used flavonoids (genistein, apigenin, kaempferol, naringenin, biochanin A, and daidzein) as substrates for this study. More than 95 % of the glucoside products were released into the medium, facilitating their isolation. Glycosylation of substrates occurred on the 7- and 3-hydroxyl group of the aglycone. UGT73A16 also displayed regiospecific glucosyl transfer activity towards 3-hydroxy flavone compound, which is the backbone of all flavonols and also for a chemically synthesized compound, not found naturally. The present study generates essential knowledge and molecular as well as biochemical tools that allow the verification of UGT73A16 in glycosylation.

Concepts: DNA, Protein, Genetics, Enzyme, Escherichia coli, Isoflavones, Flavonoid, Withania somnifera