Discover the most talked about and latest scientific content & concepts.

Journal: Anatomical record (Hoboken, N.J. : 2007)


Here we describe an extremely large and relatively complete (roughly 65%) skeleton of Tyrannosaurus rex (RSM P2523.8). Multiple measurements (including those of the skull, hip, and limbs) show that RSM P2523.8 was a robust individual with an estimated body mass exceeding all other known T. rex specimens and representatives of all other gigantic terrestrial theropods. Histological sampling of the fibula confirms that RSM P2523.8 is skeletally mature. The prevalence of incompletely coossified elements contradicts previous assertions that such unfused elements can be taken as indicators of somatic immaturity. As an extreme example of both ontogenetic maturity and osteological robustness, RSM P2523.8 offers support for prior hypotheses that a sampling bias occurs throughout the Dinosauria, making it likely that most taxa grew to significantly greater size than current known specimens indicate. This article is protected by copyright. All rights reserved.


The intromittent organs of most amniotes contain variable-volume hydrostatic skeletons that are stored in a flexible state and inflate with fluid before or during copulation. However, the penis in male crocodilians is notable because its shaft does not seem to change either its shape or bending stiffness as blood enters its vascular spaces before copulation. Here I report that crocodilians may have evolved a mechanism for penile shaft erection that does not require inflation and detumescence. Dissections of the cloaca in sexually mature male American alligators (Alligator mississippiensis) show that the cross section of the proximal shaft of the alligator penis contains dense collagenous tissues that do not significantly change shape when fluid is added to the central vascular space. The large amount of collagen in the wall and central space of the alligator penis stiffen the structure so it can be simply everted for copulation and rapidly retracted at its completion. Because no muscles insert directly onto the penis, eversion and retraction must be produced indirectly. My results suggest that the contraction of paired levator cloacae muscles around the anterior end of the cloaca rotates the penis out of the cloacal opening and strains the ligamentum rami that connect the base of the penis to the ischia. When the cloacal muscles relax, the elastic recoil of the ligamentum rami can return the penis to its original position inside the cloaca. Anat Rec, 296:488-494, 2013. © 2013 Wiley Periodicals, Inc.

Concepts: Sexual intercourse, Erectile dysfunction, Penis, Alligatoridae, Alligator, American Alligator, Chinese Alligator, Cloaca


The novel observation of a palatal retial organ in the bowhead whale (Balaena mysticetus) is reported, with characterization of its form and function. This bulbous ridge of highly vascularized tissue, here designated the corpus cavernosum maxillaris, runs along the center of the hard palate, expanding cranially to form two large lobes that terminate under the tip of the rostral palate, with another enlarged node at the caudal terminus. Gross anatomical and microscopic observation of tissue sections discloses a web-like internal mass with a large blood volume. Histological examination reveals large numbers of blood vessels and vascular as well as extravascular spaces resembling a blood-filled, erectile sponge. These spaces, as well as accompanying blood vessels, extend to the base of the epithelium. We contend that this organ provides a thermoregulatory adaptation by which bowhead whales (1) control heat loss by transferring internal, metabolically generated body heat to cold seawater and (2) protect the brain from hyperthermia. We postulate that this organ may play additional roles in baleen growth and in detecting prey, and that its ability to dissipate heat might maintain proper operating temperature for palatal mechanoreceptors or chemoreceptors to detect the presence and density of intraoral prey. Anat Rec, 2013. © 2013 Wiley Periodicals, Inc.

Concepts: Whaling, Bowhead whale


Modern crocodylians possess a derived sense of face touch, in which numerous trigeminal nerve-innervated dome pressure receptors speckle the face and mandible and sense mechanical stimuli. However, the morphological features of this system are not well known, and it remains unclear how the trigeminal system changes during ontogeny and how it scales with other cranial structures. Finally, when this system evolved within crocodyliforms remains a mystery. Thus, new morphological insights into the trigeminal system of extant crocodylians may offer new paleontological tools to investigate this evolutionary transformation. A cross-sectional study integrating histological, morphometric, and 3D imaging analyses was conducted to identify patterns in cranial nervous and bony structures of Alligator mississippiensis. Nine individuals from a broad size range were CT-scanned followed by histomorphometric sampling of mandibular and maxillary nerve divisions of the trigeminal nerve. Endocast volume, trigeminal fossa volume, and maxillomandibular foramen size were compared with axon counts from proximal and distal regions of the trigeminal nerves to identify scaling properties of the structures. The trigeminal fossa has a significant positive correlation with skull length and endocast volume. We also found that axon density is greater in smaller alligators and total axon count has a significant negative correlation with skull size. Six additional extant and fossil crocodyliforms were included in a supplementary scaling analysis, which found that size was not an accurate predictor of trigeminal anatomy. This suggests that phylogeny or somatosensory adaptations may be responsible for the variation in trigeminal ganglion and nerve size in crocodyliforms. Anat Rec, 00:000-000, 2013. © 2013 Wiley Periodicals, Inc.

Concepts: Nervous system, Neuroanatomy, Cranial nerves, Mandibular nerve, Trigeminal nerve, Maxillary nerve, Trigeminal ganglion, Alligator


Previous research has revealed significant size differences between human male and female carpal bones but it is unknown if there are significant shape differences as well. This study investigated sex-related shape variation and allometric patterns in five carpal bones that make up the radiocarpal and midcarpal joints in modern humans. We found that many aspects of carpal shape (76% of all variables quantified) were similar between males and females, despite variation in size. However, 10 of the shape ratios were significantly different between males and females, with at least one significant shape difference observed in each carpal bone. Within-sex standard major axis regressions (SMA) of the numerator (i.e., the linear variables) on the denominator (i.e., the geometric mean) for each significantly different shape ratio indicated that most linear variables scaled with positive allometry in both males and females, and that for eight of the shape ratios, sex-related shape variation is associated with statistically similar sex-specific scaling relationships. Only the length of the scaphoid body and the height of the lunate triquetrum facet showed a significantly higher SMA slope in females compared with males. These findings indicate that the significant differences in the majority of the shape ratios are a function of subtle (i.e., not statistically significant) scaling differences between males and females. There are a number of potential developmental, functional, and evolutionary factors that may cause sex-related shape differences in the human carpus. The results highlight the potential for subtle differences in scaling to result in functionally significant differences in shape. Anat Rec, 2013. © 2012 Wiley Periodicals, Inc.

Concepts: Human, Male, Female, Wrist, Carpus, Lunate bone, Trapezoid bone, Scaphoid bone


The avian Herbst corpuscles are the equivalent of the Pacinian corpuscles in mammals, and detect vibration and the movement of joints and feathers. Therefore, they can be regarded as rapidly adapting low-threshold mechanoreceptors. In recent years, it has been establish that some ion channels are involved in mechanosensation and are present in both mechanosensory neurons and mechanoreceptors. Here we have used immunohistochemistry to localize some putative mechanoproteins in the Herbst corpuscles from the rictus of Columba livia. The proteins investigated were the subunits of the epithelial Na(+) channel (ENaC), the transient-receptor potential vanilloid 4 (TRPV4), and the acid-sensing ion channel 2 (ASIC2). Immunoreactivity for ENaC subunits was never found in Herbst corpuscles, while the axon expressed ASIC2 and TRPV4 immunoreactivity. Moreover, TRPV4 was also detected in the cell forming the inner core. The present results demonstrate for the first time the occurrence of mechanoproteins in avian low-threshold mechanoreceptors and provide further evidence for a possible role of the ion channels in mechanosensation. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.

Concepts: Protein, Cell, Action potential, Ion channel, Ion channels, Protein subunit, Membrane potential, Pacinian corpuscle


This study concerns the morphological differentiation between double outlet right ventricle (DORV) and aortic dextroposition (AD) defects, namely tetralogy of Fallot and Eisenmenger anomaly. Indeed, despite the similar condition in terms of sequential ventriculo-arterial connections, DORV and AD are two distinct morphological entities. It is proposed that the borderline between these two groups of malformations is represented by the specific insertion of the infundibular septum into the left anterior cranial division of the septomarginal trabeculation (or septal band) occurring in ADs and lacking in DORV. Furthermore, the spiraliform versus straight parallel arrangement of the great arteries in the two groups of anomalies is emphasized as an additional and distinctive morphological feature. Emphasis is also given to the association of straight parallel great arteries conotruncal malformations, DORV and transposition of the great arteries, with the asplenia type of heterotaxy laterality defects. Within this context, the absence of subaortic ventricular septal defect and concomitantly of spiraliform great arteries in the asplenia group of heterotaxy anomalies, as detected by this study, further substantiates our belief of not mixing collectively the ADs with the DORV in clinico-pathological diagnosis. Anat Rec, 00:000-000, 2013. © 2013 Wiley Periodicals, Inc.

Concepts: Heart, Left ventricle, Congenital heart disease, Tetralogy of Fallot, Ventricular septal defect, Atrial septal defect, Transposition of the great vessels, Double outlet right ventricle


Working on the hypothesis that an important function of the lamellate antennae of adult male beetles belonging to the genus Rhipicera is to detect scent associated with female conspecifics, and using field observations, anatomical models derived from X-ray microcomputed tomography, and scanning electron microscopy, we have investigated the behavioural, morphological, and morphometric factors that may influence molecule capture by these antennae. We found that male beetles fly upwind in a zigzag manner, or face upwind when perching, behaviour consistent with an animal that is tracking scent. Furthermore, the ultrastructure of the male and female antennae, like their gross morphology, is sexually dimorphic, with male antennae possessing many more of a particular type of receptor - the sensillum placodeum - than their female counterparts (approximately 30,000 v. 100 per antenna, respectively). Based on this disparity, we assume that the sensilla placodea on the male antennae are responsible for detecting scent associated with female Rhipicera beetles. Molecule capture by male antennae in their alert, fanned states is likely to be favoured by: a) male beetles adopting prominent, upright positions on high points when searching for scent; b) the partitioning of antennae into many small segments; c) antennal morphometry (height, width, outline area, total surface area, leakiness, and narrow channels); d) the location of the sensilla placodea where they are most likely to encounter odorant molecules; and e) well dispersed sensilla placodea. The molecule-capturing ability of male Rhipicera antennae may be similar to that of the pectinate antennae of certain male moths. This article is protected by copyright. All rights reserved.

Concepts: Electron, Insect, Copyright


The axolotl Ambystoma mexicanum is one of the most commonly used model organisms in developmental and regenerative studies because it can reconstitute what is believed to be a completely normal anatomical and functional forelimb/hindlimb after amputation. However, to date it has not been confirmed whether each regenerated forelimb muscle is really a “perfect” copy of the original muscle. This study describes the regeneration of the arm, forearm, hand, and some pectoral muscles (e.g., coracoradialis) in transgenic axolotls that express green fluorescent protein (GFP) in muscle fibers. The observations found that: (1) there were muscle anomalies in 43% of the regenerated forelimbs; (2) however, on average in each regenerated forelimb there are anomalies in only 2.5% of the total number of muscles examined, and there were no significant differences observed in the specific insertion and origin of the other muscles analyzed; (3) one of the most notable and common anomalies (seen in 35% of the regenerated forelimbs) was the presence of a fleshy coracoradialis at the level of the arm; this is a particularly outstanding configuration because in axolotls and in urodeles in general this muscle only has a thin tendon at the level of the arm, and the additional fleshy belly in the regenerated arms is strikingly similar to the fleshy biceps brachii of amniotes, suggesting a remarkable parallel between a regeneration defect and a major phenotypic change that occurred during tetrapod limb evolution; (4) during forelimb muscle regeneration there was a clear proximo-distal and radio-ulnar morphogenetic gradient, as seen in normal development, but also a ventro-dorsal gradient in the order of regeneration, which was not previously described in the literature. These results have broader implications for regenerative, evolutionary, developmental and morphogenetic studies. Anat Rec, 2014. © 2014 Wiley Periodicals, Inc.

Concepts: Developmental biology, Muscle, Regeneration, Biceps brachii muscle, Axolotl, Salamander, Mole salamander, Neoteny


Palaeobatrachidae are extinct frogs from Europe closely related to the Gondwanan Pipidae, which includes Xenopus. Their frontoparietal is a distinctive skeletal element which has served as a basis for establishing the genus Albionbatrachus. Because little was known about developmental and individual variation of the frontoparietal, and its usefulness in delimiting genera and species has sometimes been doubted, we investigate its structure in Palaeobatrachus and Albionbatrachus by means of X-ray high resolution computer tomography (micro-CT). To infer the scope of variation present in the fossil specimens, we also examined developmental and interspecific variation in extant Xenopus. In adults of extinct taxa, the internal structure of the frontoparietal bone consists of a superficial and a basal layer of compact bone, with a middle layer of cancellous bone between them, much as in early amphibians. In Albionbatrachus, the layer of cancellous bone, consisting of small and large cavities, was connected with the dorsal, sculptured surface of the bone by a system of narrow canals; in Palaeobatrachus, the layer of cancellous bone and the canals connecting this layer with the dorsal surface of the frontoparietal were reduced. The situation in Palaeobatrachus robustus from the lower Miocene of France is intermediate - while external features support assignment to Palaeobatrachus, the inner structure is similar to that in Albionbatrachus. It may be hypothesized that sculptured frontoparietals with a well-developed layer of cancellous (i.e., vascularized) bone may indicate adaptation to a more terrestrial way of life, whereas a reduced cancellous layer might indicate a permanent water dweller. This article is protected by copyright. All rights reserved.

Concepts: Skeletal system, Skull, Osseous tissue, Cortical bone, Copyright, Amphibian, Frog, Cancellous bone