SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: American journal of nephrology

26

Background: Studies on benefits of intravenous iron therapy among hemodialysis patients with functional iron deficiency anemia have shown conflicting results. We conducted a meta-analysis to assess the efficacy and safety of intravenous iron in this subset of patients. Methods: We searched MEDLINE (through December 2012), the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov for single-arm studies and randomized controlled trials (RCT) that examined the effect of intravenous iron for functional iron deficiency anemia in hemodialysis patients on anemia parameters and markers of oxidative stress and inflammation. Studies of absolute iron deficiency were excluded. Random-effect model meta-analyses were used to compute changes in outcomes of interest. Results: We identified 34 studies (2,658 patients), representing 24 single-arm studies, and 10 parallel-arm RCT. In the analyses of the study arms, intravenous iron therapy resulted in a significant increase in hemoglobin, serum ferritin, transferrin saturation rate, serum iron, reticulocyte hemoglobin content as well as a significant decrease in the percentage of hypochromic erythrocytes and erythropoietin dose. There were significant increases in plasma malonyldialdehyde level and thiobarbituric acid-reactive substances, and a decrease in neutrophil respiratory burst. The analyses of the RCT revealed less robust net changes in these parameters, and there was no increased risk of adverse events including infections, cardiac events and mortality. Conclusions: Intravenous iron therapy for functional iron deficiency anemia in hemodialysis patients improves anemia parameters but exerts some effects on markers of oxidative stress that are of unclear clinical significance. The long-term safety and efficacy of this treatment strategy requires further study. © 2014 S. Karger AG, Basel.

Concepts: Iron deficiency, Serum iron, Iron, Randomized controlled trial, Transferrin, Hemoglobin, Anemia, Iron deficiency anemia

26

Obesity impacts many inter-related, and sometimes conflicting, considerations for transplant practice. In this article, we describe an approach for applying available data on the importance of body composition to the kidney transplant population that separates implications for candidate selection, risk stratification among selected candidates, and interventions to optimize health of the individual. Transplant recipients with obesity defined by elevated body mass index (BMI) have been shown in many (but not all) studies to experience an array of adverse outcomes more commonly than normal-weight transplant recipients, including wound infections, delayed graft function, graft failure, cardiac disease, and increased costs. However, current studies have not defined limits of body composition that preclude clinical benefit from transplantation compared with long-term dialysis in patients who have passed a transplant evaluation. Formal cost-effectiveness studies are needed to determine if payers and society should be compensating centers for clinical and financial risks of transplanting obese end-stage renal disease patients. Recent studies also demonstrate the limitations of BMI alone as a measure of adiposity, and further research should be pursued to define practical measures of body composition that refine accuracy for outcomes prediction. Regarding individual management, observational registry studies have not found beneficial associations of pretransplant weight loss with patient or graft survival. However, association studies cannot distinguish purposeful from unintentional weight loss as a result of illness and comorbidity. Prospective evaluations of the impact of targeted risk modification efforts in this population including dietary changes, monitored exercise programs, and bariatric surgery are urgently needed.

Concepts: Bariatric surgery, Renal failure, Weight loss, Nephrology, Body mass index, Chronic kidney disease, Kidney, Obesity

8

Cancer immunotherapy, such as anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death 1 (PD-1), has revolutionized the treatment of malignancies by engaging the patient’s own immune system against the tumor rather than targeting the cancer directly. These therapies have demonstrated a significant benefit in the treatment of melanomas and other cancers.

Concepts: Tumor, Vitamin D, Neoplasm, Oncology, Chemotherapy, Cancer, Immune system

7

People with diabetes and kidney disease have a high risk of cardiovascular events and progression of kidney disease. Sodium glucose co-transporter 2 inhibitors lower plasma glucose by reducing the uptake of filtered glucose in the kidney tubule, leading to increased urinary glucose excretion. They have been repeatedly shown to induce modest natriuresis and reduce HbA1c, blood pressure, weight, and albuminuria in patients with type 2 diabetes. However, the effects of these agents on kidney and cardiovascular events have not been extensively studied in patients with type 2 diabetes and established kidney disease.

Concepts: Diabetic nephropathy, Aldosterone, Urine, Blood, Renin, Diabetes mellitus, Glucose, Kidney

5

A database analysis was conducted to assess the effectiveness of sucroferric oxyhydroxide (SO) on lowering serum phosphorus and phosphate binder (PB) pill burden among adult peritoneal dialysis (PD) patients prescribed SO as part of routine care.

Concepts: Peritoneal dialysis, Nephrology, Peritoneum, Dialysis

5

The relationship between serum potassium, mortality, and conditions commonly associated with dyskalemias, such as heart failure (HF), chronic kidney disease (CKD), and/or diabetes mellitus (DM) is largely unknown.

Concepts: Diabetes mellitus, Hypertension, Chronic kidney disease

5

We performed a comprehensive literature review to examine evidence on the effects of hydration on the kidney. By reducing vasopressin secretion, increasing water intake may have a beneficial effect on renal function in patients with all forms of chronic kidney disease (CKD) and in those at risk of CKD. This potential benefit may be greater when the kidney is still able to concentrate urine (high fluid intake is contraindicated in dialysis-dependent patients). Increasing water intake is a well-accepted method for preventing renal calculi, and current evidence suggests that recurrent dehydration and heat stress from extreme occupational conditions is the most probable cause of an ongoing CKD epidemic in Mesoamerica. In polycystic kidney disease (PKD), increased water intake has been shown to slow renal cyst growth in animals via direct vasopressin suppression, and pharmacologic blockade of renal vasopressin-V2 receptors has been shown to slow cyst growth in patients. However, larger clinical trials are needed to determine if supplemental water can safely slow the loss of kidney function in PKD patients.

Concepts: Urine, Renal physiology, Renal failure, Electrolyte, Chronic kidney disease, Nephrology, Polycystic kidney disease, Kidney

4

The terminal complement-inhibitor eculizumab has dramatically changed the management of patients with atypical hemolytic uremic syndrome (aHUS), and has also shown promise for treating certain forms of secondary HUS (sHUS), including that caused by drugs and solid-organ/hematopoietic stem cell transplant. While effective, eculizumab is costly and inconvenient. In this review, we evaluate the literature on eculizumab cessation in these diseases to better inform clinicians who consider stopping therapy. Reported relapse rates in aHUS after stopping eculizumab are as high as 30%, suggesting indefinite therapy is reasonable and that patients who choose to stop should be closely monitored. In sHUS, relapse is rare, justifying short courses of eculizumab.

4

Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. This review focuses on mechanisms involved in the pathogenesis of MN and approaches to treatment of this disease.

3

Podocyte biology is a developing science that promises to help improve understanding of the mechanistic nature of multiple diseases associated with proteinuria. Proteinuria in nephrotic syndrome has been linked to mechanistic dysfunctions in the renal glomerulus involving the function of podocyte epithelial cells, including podocyte foot process effacement.