Discover the most talked about and latest scientific content & concepts.

Journal: Advanced science (Weinheim, Baden-Wurttemberg, Germany)


Generation of thick vascularized tissues that fully match the patient still remains an unmet challenge in cardiac tissue engineering. Here, a simple approach to 3D-print thick, vascularized, and perfusable cardiac patches that completely match the immunological, cellular, biochemical, and anatomical properties of the patient is reported. To this end, a biopsy of an omental tissue is taken from patients. While the cells are reprogrammed to become pluripotent stem cells, and differentiated to cardiomyocytes and endothelial cells, the extracellular matrix is processed into a personalized hydrogel. Following, the two cell types are separately combined with hydrogels to form bioinks for the parenchymal cardiac tissue and blood vessels. The ability to print functional vascularized patches according to the patient’s anatomy is demonstrated. Blood vessel architecture is further improved by mathematical modeling of oxygen transfer. The structure and function of the patches are studied in vitro, and cardiac cell morphology is assessed after transplantation, revealing elongated cardiomyocytes with massive actinin striation. Finally, as a proof of concept, cellularized human hearts with a natural architecture are printed. These results demonstrate the potential of the approach for engineering personalized tissues and organs, or for drug screening in an appropriate anatomical structure and patient-specific biochemical microenvironment.


Harmful materials in the blood are prevented from entering the healthy brain by a highly selective blood-brain barrier (BBB), and impairment of barrier function has been associated with a variety of neurological diseases. In Alzheimer’s disease (AD), BBB breakdown has been shown to occur even before cognitive decline and brain pathology. To investigate the role of the cerebral vasculature in AD, a physiologically relevant 3D human neural cell culture microfluidic model is developed having a brain endothelial cell monolayer with a BBB-like phenotype. This model is shown to recapitulate several key aspects of BBB dysfunction observed in AD patients: increased BBB permeability, decreased expression of claudin-1, claudin-5, and VE-cadherin, increased expression of matrix-metalloproteinase-2 and reactive oxygen species, and deposition of β-amyloid (Aβ) peptides at the vascular endothelium. Thus, it provides a well-controlled platform for investigating BBB function as well as for screening of new drugs that need to pass the BBB to gain access to neural tissues.


This study introduces a high-throughput, large-scale manufacturing method that uses aerosol jet 3D printing for a fully printed stretchable, wireless electronics. A comprehensive study of nanoink preparation and parameter optimization enables a low-profile, multilayer printing of a high-performance, capacitance flow sensor. The core printing process involves direct, microstructured patterning of biocompatible silver nanoparticles and polyimide. The optimized fabrication approach allows for transfer of highly conductive, patterned silver nanoparticle films to a soft elastomeric substrate. Stretchable mechanics modeling and seamless integration with an implantable stent display a highly stretchable and flexible sensor, deployable by a catheter for extremely low-profile, conformal insertion in a blood vessel. Optimization of a transient, wireless inductive coupling method allows for wireless detection of biomimetic cerebral aneurysm hemodynamics with the maximum readout distance of 6 cm through meat. In vitro demonstrations include wireless monitoring of flow rates (0.05-1 m s-1) in highly contoured and narrow human neurovascular models. Collectively, this work shows the potential of the printed biosystem to offer a high throughput, additive manufacturing of stretchable electronics with advances toward batteryless, real-time wireless monitoring of cerebral aneurysm hemodynamics.


2D metal nanomaterials offer exciting prospects in terms of their properties and functions. However, the ambient aqueous synthesis of atomically-thin, 2D metallic nanomaterials represents a significant challenge. Herein, freestanding and atomically-thin gold nanosheets with a thickness of only 0.47 nm (two atomic layers thick) are synthesized via a one-step aqueous approach at 20 °C, using methyl orange as a confining agent. Owing to the high surface-area-to-volume ratio, abundance of unsaturated atoms exposed on the surface and large interfacial areas arising from their ultrathin 2D nature, the as-prepared Au nanosheets demonstrate excellent catalysis performance in the model reaction of 4-nitrophenol reduction, and remarkable peroxidase-mimicking activity, which enables a highly sensitive colorimetric sensing of H2O2 with a detection limit of 0.11 × 10-6 m. This work represents the first fabrication of freestanding 2D gold with a sub-nanometer thickness, opens up an innovative pathway toward atomically-thin metal nanomaterials that can serve as model systems for inspiring fundamental advances in materials science, and holds potential across a wide region of applications.


Antibiotic resistance is spreading at an alarming rate among pathogenic bacteria in both medicine and agriculture. Interfering with the intrinsic resistance mechanisms displayed by pathogenic bacteria has the potential to make antibiotics more effective and decrease the spread of acquired antibiotic resistance. Here, it is demonstrated that cranberry proanthocyanidin (cPAC) prevents the evolution of resistance to tetracycline in Escherichia coli and Pseudomonas aeruginosa, rescues antibiotic efficacy against antibiotic-exposed cells, and represses biofilm formation. It is shown that cPAC has a potentiating effect, both in vitro and in vivo, on a broad range of antibiotic classes against pathogenic E. coli, Proteus mirabilis, and P. aeruginosa. Evidence that cPAC acts by repressing two antibiotic resistance mechanisms, selective membrane permeability and multidrug efflux pumps, is presented. Failure of cPAC to potentiate antibiotics against efflux pump-defective mutants demonstrates that efflux interference is essential for potentiation. The use of cPAC to potentiate antibiotics and mitigate the development of resistance could improve treatment outcomes and help combat the growing threat of antibiotic resistance.


The outer protective shells of nuts can have remarkable toughness and strength, which are typically achieved by a layered arrangement of sclerenchyma cells and fibers with a polygonal form. Here, the tissue structure of walnut shells is analyzed in depth, revealing that the shells consist of a single, never reported cell type: the polylobate sclereid cells. These irregularly lobed cells with concave and convex parts are on average interlocked with 14 neighboring cells. The result is an intricate arrangement that cannot be disassembled when conceived as a 3D puzzle. Mechanical testing reveals a significantly higher ultimate tensile strength of the interlocked walnut cell tissue compared to the sclerenchyma tissue of a pine seed coat lacking the lobed cell structure. The higher strength value of the walnut shell is explained by the observation that the crack cannot simply detach intact cells but has to cut through the lobes due to the interlocking. Understanding the identified nutshell structure and its development will inspire biomimetic material design and packaging concepts. Furthermore, these unique unit cells might be of special interest for utilizing nutshells in terms of food waste valorization, considering that walnuts are the most widespread tree nuts in the world.


Merging photonic structures and optoelectronic sensors into a single chip may yield a sensor-on-chip spectroscopic device that can measure the spectrum of matter. In this work, an on-chip concurrent multiwavelength infrared (IR) sensor, which consists of a set of narrowband wavelength-selective plasmonic perfect absorbers combined with pyroelectric sensors, where the response of each pyroelectric sensor is boosted only at the resonance of the nanostructured absorber, is proposed and realized. The proposed absorber, which is based on Wood’s anomaly absorption from a 2D plasmonic square lattice, shows a narrowband polarization-independent resonance (quality factor - Q of 73) with a nearly perfect absorptivity as high as 0.99 at normal incidence. The fabricated quad-wavelength IR sensors exhibit four different narrowband spectral responses at normal incidence following the predesigned resonances in the mid-wavelength infrared region that corresponds to the atmospheric window. The device can be applied for practical spectroscopic applications such as nondispersive IR sensors, IR chemical imaging devices, pyrometers, and spectroscopic thermography imaging.


Commercially available health monitors rely on rigid electronic housing coupled with aggressive adhesives and conductive gels, causing discomfort and inducing skin damage. Also, research-level skin-wearable devices, while excelling in some aspects, fall short as concept-only presentations due to the fundamental challenges of active wireless communication and integration as a single device platform. Here, an all-in-one, wireless, stretchable hybrid electronics with key capabilities for real-time physiological monitoring, automatic detection of signal abnormality via deep-learning, and a long-range wireless connectivity (up to 15 m) is introduced. The strategic integration of thin-film electronic layers with hyperelastic elastomers allows the overall device to adhere and deform naturally with the human body while maintaining the functionalities of the on-board electronics. The stretchable electrodes with optimized structures for intimate skin contact are capable of generating clinical-grade electrocardiograms and accurate analysis of heart and respiratory rates while the motion sensor assesses physical activities. Implementation of convolutional neural networks for real-time physiological classifications demonstrates the feasibility of multifaceted analysis with a high clinical relevance. Finally, in vivo demonstrations with animals and human subjects in various scenarios reveal the versatility of the device as both a health monitor and a viable research tool.


Deep learning methods for the prediction of molecular excitation spectra are presented. For the example of the electronic density of states of 132k organic molecules, three different neural network architectures: multilayer perceptron (MLP), convolutional neural network (CNN), and deep tensor neural network (DTNN) are trained and assessed. The inputs for the neural networks are the coordinates and charges of the constituent atoms of each molecule. Already, the MLP is able to learn spectra, but the root mean square error (RMSE) is still as high as 0.3 eV. The learning quality improves significantly for the CNN (RMSE = 0.23 eV) and reaches its best performance for the DTNN (RMSE = 0.19 eV). Both CNN and DTNN capture even small nuances in the spectral shape. In a showcase application of this method, the structures of 10k previously unseen organic molecules are scanned and instant spectra predictions are obtained to identify molecules for potential applications.


Confronted with the severe situation that the pace of resistance acquisition is faster than the clinical introduction of new antibiotics, health organizations are calling for effective approaches to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, an approach to treat MRSA through photolysis of staphyloxanthin, an antioxidant residing in the microdomain of S. aureus membrane, is reported. This photochemistry process is uncovered through transient absorption imaging and quantitated by absorption spectroscopy, Raman spectroscopy, and mass spectrometry. Photolysis of staphyloxanthin transiently elevates the membrane permeability and renders MRSA highly susceptible to hydrogen peroxide attack. Consequently, staphyloxanthin photolysis by low-level 460 nm light eradicates MRSA synergistically with hydrogen peroxide and other reactive oxygen species. The effectiveness of this synergistic therapy is well validated in MRSA planktonic culture, MRSA-infected macrophage cells, stationary-phase MRSA, persisters, S. aureus biofilms, and two mice wound infection models. Collectively, the work demonstrates that staphyloxanthin photolysis is a new therapeutic platform to treat MRSA infections.