Discover the most talked about and latest scientific content & concepts.

Journal: ACS applied materials & interfaces


Oral friction on the tongue surface plays a pivotal role in mechanics of food transport, speech, sensing, and hedonic responses. The highly specialized biophysical features of the human tongue such as micropapillae-dense topology, optimum wettability, and deformability present architectural challenges in designing artificial tongue surfaces, and the absence of such a biomimetic surface impedes the fundamental understanding of tongue-food/fluid interaction. Herein, we fabricate for the first time, a 3D soft biomimetic surface that replicates the topography and wettability of a real human tongue. The 3D-printed fabrication contains a Poisson point process-based (random) papillae distribution and is employed to micromold soft silicone surfaces with wettability modifications. We demonstrate the unprecedented capability of these surfaces to replicate the theoretically defined and simulated collision probability of papillae and to closely resemble the tribological performances of human tongue masks. These de novo biomimetic surfaces pave the way for accurate quantification of mechanical interactions in the soft oral mucosa.


Water-repellent superhydrophobic (SH) surfaces promise nearly endless applications, from increased buoyancy to drag reduction, but their practical use is limited. This comes from the fact that a SH surface will start to lose its efficiency once it is forced into water or damaged by mechanical abrasion. Here, we circumvent these two most-challenging obstacles and demonstrate a highly floating multi-faced SH metallic assembly inspired by the diving bell spiders and fire ant assemblies. We study and optimize, both theoretically and experimentally, the floating properties of the design. The assembly shows an unprecedented floating ability; it can float back to surface even after being forced submerging under water for months. More strikingly, the assembly maintains its floating ability even after severe damage and piercing in stark contrast to conventional watercrafts and aquatic devices. The potential use of the SH floating metallic assembly ranges from floating devices and electronic equipment protection, to highly floatable ships and vessels.


SARS-CoV-2, the virus that causes the disease COVID-19, remains viable on solids for periods of up to one week, so one potential route for human infection is via exposure to an infectious dose from a solid. We have fabricated and tested a coating that is designed to reduce the longevity of SARS-CoV-2 on solids. The coating consists of cuprous oxide (Cu2O) particles bound with polyurethane. After one hour on coated glass or stainless steel, the viral titer was reduced by about 99.9% on average compared to the uncoated sample. An advantage of a polyurethane-based coating is that polyurethane is already used to coat a large number of everyday objects. Our coating adheres well to glass and stainless steel, as well as everyday items that people may fear to touch during a pandemic, such as a doorknob, a pen, and a credit card keypad button. The coating performs well in the cross-hatch durability test and remains intact and active after 13 days immersed in water, or after exposure to multiple cycles of exposure to virus and disinfection.


In the current information age, the realization of memory devices with energy efficient design, high storage density, nonvolatility, fast access and low cost is still a great challenge. As a promising technology to meet these stringent requirements, nonvolatile multi-state memory (NMSM) has attracted lots of attentions over the past years. Owing to the capability to store data in more than single bit (0 or 1), the storage density is dramatically enhanced without scaling down the memory cell, making memory devices more efficient and less expensive. Multiple states in a single cell also provide an unconventional in-memory computing platform beyond the von Neumann architecture and enable neuromorphic computing with low power consumption. Albeit the NMSM research has motivated and pervaded almost all existing memory technologies, there is no comprehensive review on the wide variety of NMSMs up to date. In this review, an in-depth perspective is presented on the recent progress and challenges on the device architectures, material innovation, working mechanisms of various types of NMSMs, including flash, magnetic random-access memory (MRAM), resistive random-access memory (RRAM), ferroelectric random-access memory (FeRAM), and phase-change memory (PCM). The properties and performance of these NMSMs, which are the key to realizing highly integrated memory hierarchy, are discussed and compared.


Passive oxide layers on metal substrates impose remarkable interfacial resistance for electron and phonon transport. Here, a scalable surface activation process is presented for the breakdown of the passive oxide layer and the formation of nanowire/nanopyramid structured surfaces on metal substrates, which enables high-efficiency catalysis of high-crystallinity carbon nanotubes (CNTs) and the direct integration of the CNT-metal hierarchical architectures with flexible free-form configurations. The CNT-metal hierarchical architecture facilitates a dielectric free-energy-carrier transport pathway and blocks the reformation of passive oxide layer, and thus demonstrates a 5-fold decrease in interfacial electrical resistance with 66% increase in specific surface area compared with those without surface activation. Moreover, the CNT-metal hierarchical architectures demonstrate omnidirectional blackbody photoabsorption with the reflectance of 1 × 10-5 over the range from ultraviolet to terahertz region, which is 1 order of magnitude lower than that of any previously reported broadband absorber material. The synergistically incorporated CNT-metal hierarchical architectures offer record-high broadband optical absorption with excellent electrical and structural properties as well as industrial-scale producibility.


We present a multifunctional tactile sensor inspired by human hairy skin structure, in which the sensitive hair sensor and the robust skin sensor are integrated into a single device via a pair of Co-based ferromagnetic microwire arrays in a very simple manner. The sensor possesses a self-tunable effective compliance with respect to the magnitude of the stimulus, allowing a wide range of loading force to be measured. The sensor also exhibits some amazing functions, such as air-flow detection, material property characterization, and excellent damage resistance. The novel sensing mechanism and structure provide a new strategy for designing multifunctional tactile sensors and show great potential applications on intelligent robot and sensing in harsh environments.

Concepts: Skin, Novel, Transducer, Hair, Hair follicle, Robot, Sensor, Transducers


Conventional ultrasonic imaging requires acoustic scanning over a target object using a piezoelectric transducer array, followed by signal processing to reconstruct the image. Here, we report a novel ultrasonic imaging device that can optically display an acoustic signal on the surface of a piezoelectric transducer. By fabricating an organic light-emitting diode (OLED) on top of a piezoelectric crystal (lead zirconate titanate, PZT), an acousto-optical piezoelectric OLED (p-OLED) transducer is realized, converting an acoustic wave profile directly to an optical image. Due to the integrated device architecture, the resulting p-OLED features a high acousto-optic conversion efficiency at the resonant ultrasound frequency, providing a piezoelectric field to drive the OLED. By incorporating an electrode array in the p-OLED, we demonstrate a novel tomographic ultrasound imaging device that is operated without a need for conventional signal processing.


We report the new development of fire extinguishing agents employing the latest technology of fighting and preventing fires. The in situ technology of fighting fires and explosions involves using large-scale ultrafast-gelated foams, which possess new properties and unique characteristics, in particular, exceptional thermal stability, mechanical durability and full biocompatibility. We provide a detailed description of the physico-chemical processes of silica foam formation at the molecular level and functional comparison with current fire extinguishing and fighting agents. The new method allows to produce controllable gelation silica hybrid foams in the range from 2 to 30 seconds up to 100 Pa·s viscosity. Chemical structure and hierarchical morphology obtained by SEM and TEM images develop thermal insulation capabilities of the foams, reaching a specific heat value of more than 2.5 kJ/(kg·°С). The produced foam consists of organized silica nanoparticles as determined by XPS and X-Ray diffraction analysis with a narrow particle size distribution of about 10-20 nm. As a result of fire extinguishing tests, it is shown that the extinguishing efficiency exhibited by silica-based sol-gel foams is almost 50 times higher than that for ordinary water and 15 times better than that for state-of-the-art firefighting agent AFFF(aqueous film forming foam). The biodegradation index determined by the time of the induction period was only 3 days, while even for conventional foaming agents this index is several times higher.

Concepts: X-ray, Nanoparticle, Colloid, Heat, Particle size distribution, Silicon dioxide, Foam, Aerogel


Electrochromic polymers (ECPs) have been shown to be synthetically tunable, producing a full palette of vibrantly colored to highly transmissive polymers. The development of these colored-to-transmissive ECPs employed synthetic design strategies for broad color targeting; however, due to the subtleties of color perception and the intricacies of polymer structure and color relationships, fine color control is difficult. In contrast, color mixing is a well-established practice in the printing industry. We have identified three colored-to-transmissive switching electrochromic polymers, referred to as ECP-Cyan (ECP-C), ECP-Magenta (ECP-M), and ECP-Yellow (ECP-Y), which, via the co-processing of multicomponent ECP mixtures, follow the CMY color mixing model. The presented work qualitatively assesses the thin film characteristics of solution co-processed ECP mixtures. To quantitatively determine the predictability of the color properties of ECP mixtures, we estimated mass extinction coefficients (εmass) from solution spectra of the CMY ECPs and compared the estimated and experimentally observed color values of blends via a calculated color difference (ΔEab). The values of ΔEab range from 8 to 26 across all mixture compositions, with an average value of 15, representing a reasonable degree of agreement between predicted and observed color values. We demonstrate here the ability to co-process ECP mixtures into vibrantly colored, visually continuous films and the ability to estimate the color properties produced in these mixed ECP films.

Concepts: Polymer, Color, Printing, Primary color, RGB color model, Color space, Color theory, Mix


The morphology and electronic structure of metal oxides, including TiO2 on the nanoscale, definitely determine their electronic or electrochemical properties, especially those relevant to application in energy devices. For this purpose, a concept for controlling the morphology and electrical conductivity in TiO2, based on tuning by electrospinning, is proposed. We found that the 1D TiO2 nanofibers surprisingly gave higher cyclic retention than 0D nanopowder, and nitrogen doping in the form of TiO2Nx also caused further improvement. This is due to higher conductivity and faster Li+ diffusion, as confirmed by electrochemical impedance spectra. Our findings provide an effective and scalable solution for energy storage efficiency.

Concepts: Electrochemistry, Oxide, Cadmium, Battery, Electrode, Rechargeable battery, Capacitor, Lithium