Discover the most talked about and latest scientific content & concepts.


While rich medical, behavioral, and socio-demographic data are key to modern data-driven research, their collection and use raise legitimate privacy concerns. Anonymizing datasets through de-identification and sampling before sharing them has been the main tool used to address those concerns. We here propose a generative copula-based method that can accurately estimate the likelihood of a specific person to be correctly re-identified, even in a heavily incomplete dataset. On 210 populations, our method obtains AUC scores for predicting individual uniqueness ranging from 0.84 to 0.97, with low false-discovery rate. Using our model, we find that 99.98% of Americans would be correctly re-identified in any dataset using 15 demographic attributes. Our results suggest that even heavily sampled anonymized datasets are unlikely to satisfy the modern standards for anonymization set forth by GDPR and seriously challenge the technical and legal adequacy of the de-identification release-and-forget model.


Since 2010 the People’s Republic of China has been engaged in an effort to reform its system of organ transplantation by developing a voluntary organ donation and allocation infrastructure. This has required a shift in the procurement of organs sourced from China’s prison and security apparatus to hospital-based voluntary donors declared dead by neurological and/or circulatory criteria. Chinese officials announced that from January 1, 2015, hospital-based donors would be the sole source of organs. This paper examines the availability, transparency, integrity, and consistency of China’s official transplant data.


We compared students' self-reported perception of learning with their actual learning under controlled conditions in large-enrollment introductory college physics courses taught using 1) active instruction (following best practices in the discipline) and 2) passive instruction (lectures by experienced and highly rated instructors). Both groups received identical class content and handouts, students were randomly assigned, and the instructor made no effort to persuade students of the benefit of either method. Students in active classrooms learned more (as would be expected based on prior research), but their perception of learning, while positive, was lower than that of their peers in passive environments. This suggests that attempts to evaluate instruction based on students' perceptions of learning could inadvertently promote inferior (passive) pedagogical methods. For instance, a superstar lecturer could create such a positive feeling of learning that students would choose those lectures over active learning. Most importantly, these results suggest that when students experience the increased cognitive effort associated with active learning, they initially take that effort to signify poorer learning. That disconnect may have a detrimental effect on students' motivation, engagement, and ability to self-regulate their own learning. Although students can, on their own, discover the increased value of being actively engaged during a semester-long course, their learning may be impaired during the initial part of the course. We discuss strategies that instructors can use, early in the semester, to improve students' response to being actively engaged in the classroom.


Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.


Inspired by broader efforts to make the conclusions of scientific research more robust, we have compiled a list of some of the most common statistical mistakes that appear in the scientific literature. The mistakes have their origins in ineffective experimental designs, inappropriate analyses and/or flawed reasoning. We provide advice on how authors, reviewers and readers can identify and resolve these mistakes and, we hope, avoid them in the future.


To examine the dose-response associations between accelerometer assessed total physical activity, different intensities of physical activity, and sedentary time and all cause mortality.


Human-wildlife conflict is one of the greatest threats to species populations worldwide. One species facing national declines in the UK is the herring gull (Larus argentatus), despite an increase in numbers in urban areas. Gulls in urban areas are often considered a nuisance owing to behaviours such as food-snatching. Whether urban gull feeding behaviour is influenced by human behavioural cues, such as gaze direction, remains unknown. We therefore measured the approach times of herring gulls to a food source placed in close proximity to an experimenter who either looked directly at the gull or looked away. We found that only 26% of targeted gulls would touch the food, suggesting that food-snatching is likely to be conducted by a minority of individuals. When gulls did touch the food, they took significantly longer to approach when the experimenter’s gaze was directed towards them compared with directed away. However, inter-individual behaviour varied greatly, with some gulls approaching similarly quickly in both treatments, while others approached much more slowly when the experimenter was looking at them. These results indicate that reducing human-herring gull conflict may be possible through small changes in human behaviour, but will require consideration of behavioural differences between individual gulls.


In an attempt to control the mosquito-borne diseases yellow fever, dengue, chikungunya, and Zika fevers, a strain of transgenically modified Aedes aegypti mosquitoes containing a dominant lethal gene has been developed by a commercial company, Oxitec Ltd. If lethality is complete, releasing this strain should only reduce population size and not affect the genetics of the target populations. Approximately 450 thousand males of this strain were released each week for 27 months in Jacobina, Bahia, Brazil. We genotyped the release strain and the target Jacobina population before releases began for >21,000 single nucleotide polymorphisms (SNPs). Genetic sampling from the target population six, 12, and 27-30 months after releases commenced provides clear evidence that portions of the transgenic strain genome have been incorporated into the target population. Evidently, rare viable hybrid offspring between the release strain and the Jacobina population are sufficiently robust to be able to reproduce in nature. The release strain was developed using a strain originally from Cuba, then outcrossed to a Mexican population. Thus, Jacobina Ae. aegypti are now a mix of three populations. It is unclear how this may affect disease transmission or affect other efforts to control these dangerous vectors. These results highlight the importance of having in place a genetic monitoring program during such releases to detect un-anticipated outcomes.


Combating climate change requires unified action across all sectors of society. However, this collective action is precluded by the ‘consensus gap’ between scientific knowledge and public opinion. Here, we test the extent to which the iconic cities around the world are likely to shift in response to climate change. By analyzing city pairs for 520 major cities of the world, we test if their climate in 2050 will resemble more closely to their own current climate conditions or to the current conditions of other cities in different bioclimatic regions. Even under an optimistic climate scenario (RCP 4.5), we found that 77% of future cities are very likely to experience a climate that is closer to that of another existing city than to its own current climate. In addition, 22% of cities will experience climate conditions that are not currently experienced by any existing major cities. As a general trend, we found that all the cities tend to shift towards the sub-tropics, with cities from the Northern hemisphere shifting to warmer conditions, on average ~1000 km south (velocity ~20 km.year-1), and cities from the tropics shifting to drier conditions. We notably predict that Madrid’s climate in 2050 will resemble Marrakech’s climate today, Stockholm will resemble Budapest, London to Barcelona, Moscow to Sofia, Seattle to San Francisco, Tokyo to Changsha. Our approach illustrates how complex climate data can be packaged to provide tangible information. The global assessment of city analogues can facilitate the understanding of climate change at a global level but also help land managers and city planners to visualize the climate futures of their respective cities, which can facilitate effective decision-making in response to on-going climate change.


Food choices are shifting globally in ways that are negatively affecting both human health and the environment. Here we consider how consuming an additional serving per day of each of 15 foods is associated with 5 health outcomes in adults and 5 aspects of agriculturally driven environmental degradation. We find that while there is substantial variation in the health outcomes of different foods, foods associated with a larger reduction in disease risk for one health outcome are often associated with larger reductions in disease risk for other health outcomes. Likewise, foods with lower impacts on one metric of environmental harm tend to have lower impacts on others. Additionally, of the foods associated with improved health (whole grain cereals, fruits, vegetables, legumes, nuts, olive oil, and fish), all except fish have among the lowest environmental impacts, and fish has markedly lower impacts than red meats and processed meats. Foods associated with the largest negative environmental impacts-unprocessed and processed red meat-are consistently associated with the largest increases in disease risk. Thus, dietary transitions toward greater consumption of healthier foods would generally improve environmental sustainability, although processed foods high in sugars harm health but can have relatively low environmental impacts. These findings could help consumers, policy makers, and food companies to better understand the multiple health and environmental implications of food choices.