Discover the most talked about and latest scientific content & concepts.


Domestication shaped wolves into dogs and transformed both their behavior and their anatomy. Here we show that, in only 33,000 y, domestication transformed the facial muscle anatomy of dogs specifically for facial communication with humans. Based on dissections of dog and wolf heads, we show that the levator anguli oculi medialis, a muscle responsible for raising the inner eyebrow intensely, is uniformly present in dogs but not in wolves. Behavioral data, collected from dogs and wolves, show that dogs produce the eyebrow movement significantly more often and with higher intensity than wolves do, with highest-intensity movements produced exclusively by dogs. Interestingly, this movement increases paedomorphism and resembles an expression that humans produce when sad, so its production in dogs may trigger a nurturing response in humans. We hypothesize that dogs with expressive eyebrows had a selection advantage and that “puppy dog eyes” are the result of selection based on humans' preferences.


To assess the associations between the consumption of sugary drinks (such as sugar sweetened beverages and 100% fruit juices), artificially sweetened beverages, and the risk of cancer.


To quantify the effect on cervical disease at age 20 years of immunisation with bivalent human papillomavirus (HPV) vaccine at age 12-13 years.


To examine the effect of regular breakfast consumption on weight change and energy intake in people living in high income countries.


The negative effects of extremely competitive academic and research environments on the performance and health of researchers are well known and common worldwide. The prevalence of these effects, particularly among early career researchers, calls for a more humane and people-centered way of working within research labs. Although there is growing concern about the urgent need for a better life-work balance when doing science, there are not many examples about how this could be achieved in practice. In this article, I introduce 10 simple rules to make the working environment of research labs more nurturing, collaborative, and people-centered. These rules are directed towards existing and future principal investigators (PIs) but will be of interest to anyone working in a research lab and/or dealing with how to improve working conditions for scientists.


Spending time in natural environments can benefit health and well-being, but exposure-response relationships are under-researched. We examined associations between recreational nature contact in the last seven days and self-reported health and well-being. Participants (n = 19,806) were drawn from the Monitor of Engagement with the Natural Environment Survey (2014/15-2015/16); weighted to be nationally representative. Weekly contact was categorised using 60 min blocks. Analyses controlled for residential greenspace and other neighbourhood and individual factors. Compared to no nature contact last week, the likelihood of reporting good health or high well-being became significantly greater with contact ≥120 mins (e.g. 120-179 mins: ORs [95%CIs]: Health = 1.59 [1.31-1.92]; Well-being = 1.23 [1.08-1.40]). Positive associations peaked between 200-300 mins per week with no further gain. The pattern was consistent across key groups including older adults and those with long-term health issues. It did not matter how 120 mins of contact a week was achieved (e.g. one long vs. several shorter visits/week). Prospective longitudinal and intervention studies are a critical next step in developing possible weekly nature exposure guidelines comparable to those for physical activity.


Himalayan glaciers supply meltwater to densely populated catchments in South Asia, and regional observations of glacier change over multiple decades are needed to understand climate drivers and assess resulting impacts on glacier-fed rivers. Here, we quantify changes in ice thickness during the intervals 1975-2000 and 2000-2016 across the Himalayas, using a set of digital elevation models derived from cold war-era spy satellite film and modern stereo satellite imagery. We observe consistent ice loss along the entire 2000-km transect for both intervals and find a doubling of the average loss rate during 2000-2016 [-0.43 ± 0.14 m w.e. year-1 (meters of water equivalent per year)] compared to 1975-2000 (-0.22 ± 0.13 m w.e. year-1). The similar magnitude and acceleration of ice loss across the Himalayas suggests a regionally coherent climate forcing, consistent with atmospheric warming and associated energy fluxes as the dominant drivers of glacier change.


Ambient air pollution is a major health risk, leading to respiratory and cardiovascular mortality. A recent Global Exposure Mortality Model, based on an unmatched number of cohort studies in many countries, provides new hazard ratio functions, calling for re-evaluation of the disease burden. Accordingly, we estimated excess cardiovascular mortality attributed to air pollution in Europe.


Despite considerable advances in process understanding, numerical modeling, and the observational record of ice sheet contributions to global mean sea-level rise (SLR) since the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change, severe limitations remain in the predictive capability of ice sheet models. As a consequence, the potential contributions of ice sheets remain the largest source of uncertainty in projecting future SLR. Here, we report the findings of a structured expert judgement study, using unique techniques for modeling correlations between inter- and intra-ice sheet processes and their tail dependences. We find that since the AR5, expert uncertainty has grown, in particular because of uncertain ice dynamic effects. For a +2 °C temperature scenario consistent with the Paris Agreement, we obtain a median estimate of a 26 cm SLR contribution by 2100, with a 95th percentile value of 81 cm. For a +5 °C temperature scenario more consistent with unchecked emissions growth, the corresponding values are 51 and 178 cm, respectively. Inclusion of thermal expansion and glacier contributions results in a global total SLR estimate that exceeds 2 m at the 95th percentile. Our findings support the use of scenarios of 21st century global total SLR exceeding 2 m for planning purposes. Beyond 2100, uncertainty and projected SLR increase rapidly. The 95th percentile ice sheet contribution by 2200, for the +5 °C scenario, is 7.5 m as a result of instabilities coming into play in both West and East Antarctica. Introducing process correlations and tail dependences increases estimates by roughly 15%.


Elimination of HIV-1 requires clearance and removal of integrated proviral DNA from infected cells and tissues. Here, sequential long-acting slow-effective release antiviral therapy (LASER ART) and CRISPR-Cas9 demonstrate viral clearance in latent infectious reservoirs in HIV-1 infected humanized mice. HIV-1 subgenomic DNA fragments, spanning the long terminal repeats and the Gag gene, are excised in vivo, resulting in elimination of integrated proviral DNA; virus is not detected in blood, lymphoid tissue, bone marrow and brain by nested and digital-droplet PCR as well as RNAscope tests. No CRISPR-Cas9 mediated off-target effects are detected. Adoptive transfer of human immunocytes from dual treated, virus-free animals to uninfected humanized mice fails to produce infectious progeny virus. In contrast, HIV-1 is readily detected following sole LASER ART or CRISPR-Cas9 treatment. These data provide proof-of-concept that permanent viral elimination is possible.