SciCombinator

Discover the most talked about and latest scientific content & concepts.

7463

Observational evidence suggests that mask wearing mitigates transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is uncertain if this observed association arises through protection of uninfected wearers (protective effect), via reduced transmission from infected mask wearers (source control), or both.

5349

Stringent COVID-19 control measures were imposed in Wuhan between January 23 and April 8, 2020. Estimates of the prevalence of infection following the release of restrictions could inform post-lockdown pandemic management. Here, we describe a city-wide SARS-CoV-2 nucleic acid screening programme between May 14 and June 1, 2020 in Wuhan. All city residents aged six years or older were eligible and 9,899,828 (92.9%) participated. No new symptomatic cases and 300 asymptomatic cases (detection rate 0.303/10,000, 95% CI 0.270-0.339/10,000) were identified. There were no positive tests amongst 1,174 close contacts of asymptomatic cases. 107 of 34,424 previously recovered COVID-19 patients tested positive again (re-positive rate 0.31%, 95% CI 0.423-0.574%). The prevalence of SARS-CoV-2 infection in Wuhan was therefore very low five to eight weeks after the end of lockdown.

4808

The most restrictive non-pharmaceutical interventions (NPIs) for controlling the spread of COVID-19 are mandatory stay-at-home and business closures. Given the consequences of these policies, it is important to assess their effects. We evaluate the effects on epidemic case growth of more restrictive NPIs (mrNPIs), above and beyond those of less restrictive NPIs (lrNPIs).

4768

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a worldwide pandemic. Safe and effective vaccines are needed urgently.

3167

Universal masking is one of the prevention strategies recommended by CDC to slow the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). As of February 1, 2021, 38 states and the District of Columbia had universal masking mandates. Mask wearing has also been mandated by executive order for federal property* as well as on domestic and international transportation conveyances.† Masks substantially reduce exhaled respiratory droplets and aerosols from infected wearers and reduce exposure of uninfected wearers to these particles. Cloth masks§ and medical procedure masks¶ fit more loosely than do respirators (e.g., N95 facepieces). The effectiveness of cloth and medical procedure masks can be improved by ensuring that they are well fitted to the contours of the face to prevent leakage of air around the masks' edges. During January 2021, CDC conducted experimental simulations using pliable elastomeric source and receiver headforms to assess the extent to which two modifications to medical procedure masks, 1) wearing a cloth mask over a medical procedure mask (double masking) and 2) knotting the ear loops of a medical procedure mask where they attach to the mask’s edges and then tucking in and flattening the extra material close to the face (knotted and tucked masks), could improve the fit of these masks and reduce the receiver’s exposure to an aerosol of simulated respiratory droplet particles of the size considered most important for transmitting SARS-CoV-2. The receiver’s exposure was maximally reduced (>95%) when the source and receiver were fitted with modified medical procedure masks. These laboratory-based experiments highlight the importance of good fit to optimize mask performance. Until vaccine-induced population immunity is achieved, universal masking is a highly effective means to slow the spread of SARS-CoV-2** when combined with other protective measures, such as physical distancing, avoiding crowds and poorly ventilated indoor spaces, and good hand hygiene. Innovative efforts to improve the fit of cloth and medical procedure masks to enhance their performance merit attention.

3093

To describe outcomes of patients with coronavirus disease 2019 (COVID-19) in the outpatient setting after early treatment with zinc, low dose hydroxychloroquine, and azithromycin (triple therapy) dependent on risk stratification.

3044

Crowded indoor environments, such as households, are high-risk settings for the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

2932

As of October 15, 216,025 deaths from coronavirus disease 2019 (COVID-19) have been reported in the United States*; however, this number might underestimate the total impact of the pandemic on mortality. Measures of excess deaths have been used to estimate the impact of public health pandemics or disasters, particularly when there are questions about underascertainment of deaths directly attributable to a given event or cause (1-6).† Excess deaths are defined as the number of persons who have died from all causes, in excess of the expected number of deaths for a given place and time. This report describes trends and demographic patterns in excess deaths during January 26-October 3, 2020. Expected numbers of deaths were estimated using overdispersed Poisson regression models with spline terms to account for seasonal patterns, using provisional mortality data from CDC’s National Vital Statistics System (NVSS) (7). Weekly numbers of deaths by age group and race/ethnicity were assessed to examine the difference between the weekly number of deaths occurring in 2020 and the average number occurring in the same week during 2015-2019 and the percentage change in 2020. Overall, an estimated 299,028 excess deaths have occurred in the United States from late January through October 3, 2020, with two thirds of these attributed to COVID-19. The largest percentage increases were seen among adults aged 25-44 years and among Hispanic or Latino (Hispanic) persons. These results provide information about the degree to which COVID-19 deaths might be underascertained and inform efforts to prevent mortality directly or indirectly associated with the COVID-19 pandemic, such as efforts to minimize disruptions to health care.

2632

A recent mathematical model has suggested that staying at home did not play a dominant role in reducing COVID-19 transmission. The second wave of cases in Europe, in regions that were considered as COVID-19 controlled, may raise some concerns. Our objective was to assess the association between staying at home (%) and the reduction/increase in the number of deaths due to COVID-19 in several regions in the world. In this ecological study, data from www.google.com/covid19/mobility/ , ourworldindata.org and covid.saude.gov.br were combined. Countries with > 100 deaths and with a Healthcare Access and Quality Index of ≥ 67 were included. Data were preprocessed and analyzed using the difference between number of deaths/million between 2 regions and the difference between the percentage of staying at home. The analysis was performed using linear regression with special attention to residual analysis. After preprocessing the data, 87 regions around the world were included, yielding 3741 pairwise comparisons for linear regression analysis. Only 63 (1.6%) comparisons were significant. With our results, we were not able to explain if COVID-19 mortality is reduced by staying at home in ~ 98% of the comparisons after epidemiological weeks 9 to 34.

2334

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiology of coronavirus disease 2019 (COVID-19), is readily transmitted person to person. Optimal control of COVID-19 depends on directing resources and health messaging to mitigation efforts that are most likely to prevent transmission, but the relative importance of such measures has been disputed.