Discover the most talked about and latest scientific content & concepts.


Observational evidence suggests that mask wearing mitigates transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is uncertain if this observed association arises through protection of uninfected wearers (protective effect), via reduced transmission from infected mask wearers (source control), or both.


Stringent COVID-19 control measures were imposed in Wuhan between January 23 and April 8, 2020. Estimates of the prevalence of infection following the release of restrictions could inform post-lockdown pandemic management. Here, we describe a city-wide SARS-CoV-2 nucleic acid screening programme between May 14 and June 1, 2020 in Wuhan. All city residents aged six years or older were eligible and 9,899,828 (92.9%) participated. No new symptomatic cases and 300 asymptomatic cases (detection rate 0.303/10,000, 95% CI 0.270-0.339/10,000) were identified. There were no positive tests amongst 1,174 close contacts of asymptomatic cases. 107 of 34,424 previously recovered COVID-19 patients tested positive again (re-positive rate 0.31%, 95% CI 0.423-0.574%). The prevalence of SARS-CoV-2 infection in Wuhan was therefore very low five to eight weeks after the end of lockdown.


Mandates for mask use in public during the recent coronavirus disease 2019 (COVID-19) pandemic, worsened by global shortage of commercial supplies, have led to widespread use of homemade masks and mask alternatives. It is assumed that wearing such masks reduces the likelihood for an infected person to spread the disease, but many of these mask designs have not been tested in practice. We have demonstrated a simple optical measurement method to evaluate the efficacy of masks to reduce the transmission of respiratory droplets during regular speech. In proof-of-principle studies, we compared a variety of commonly available mask types and observed that some mask types approach the performance of standard surgical masks, while some mask alternatives, such as neck gaiters or bandanas, offer very little protection. Our measurement setup is inexpensive and can be built and operated by nonexperts, allowing for rapid evaluation of mask performance during speech, sneezing, or coughing.


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a worldwide pandemic. Safe and effective vaccines are needed urgently.


To describe outcomes of patients with coronavirus disease 2019 (COVID-19) in the outpatient setting after early treatment with zinc, low dose hydroxychloroquine, and azithromycin (triple therapy) dependent on risk stratification.


Community and close contact exposures continue to drive the coronavirus disease 2019 (COVID-19) pandemic. CDC and other public health authorities recommend community mitigation strategies to reduce transmission of SARS-CoV-2, the virus that causes COVID-19 (1,2). Characterization of community exposures can be difficult to assess when widespread transmission is occurring, especially from asymptomatic persons within inherently interconnected communities. Potential exposures, such as close contact with a person with confirmed COVID-19, have primarily been assessed among COVID-19 cases, without a non-COVID-19 comparison group (3,4). To assess community and close contact exposures associated with COVID-19, exposures reported by case-patients (154) were compared with exposures reported by control-participants (160). Case-patients were symptomatic adults (persons aged ≥18 years) with SARS-CoV-2 infection confirmed by reverse transcription-polymerase chain reaction (RT-PCR) testing. Control-participants were symptomatic outpatient adults from the same health care facilities who had negative SARS-CoV-2 test results. Close contact with a person with known COVID-19 was more commonly reported among case-patients (42%) than among control-participants (14%). Case-patients were more likely to have reported dining at a restaurant (any area designated by the restaurant, including indoor, patio, and outdoor seating) in the 2 weeks preceding illness onset than were control-participants (adjusted odds ratio [aOR] = 2.4; 95% confidence interval [CI] = 1.5-3.8). Restricting the analysis to participants without known close contact with a person with confirmed COVID-19, case-patients were more likely to report dining at a restaurant (aOR = 2.8, 95% CI = 1.9-4.3) or going to a bar/coffee shop (aOR = 3.9, 95% CI = 1.5-10.1) than were control-participants. Exposures and activities where mask use and social distancing are difficult to maintain, including going to places that offer on-site eating or drinking, might be important risk factors for acquiring COVID-19. As communities reopen, efforts to reduce possible exposures at locations that offer on-site eating and drinking options should be considered to protect customers, employees, and communities.


As of October 15, 216,025 deaths from coronavirus disease 2019 (COVID-19) have been reported in the United States*; however, this number might underestimate the total impact of the pandemic on mortality. Measures of excess deaths have been used to estimate the impact of public health pandemics or disasters, particularly when there are questions about underascertainment of deaths directly attributable to a given event or cause (1-6).† Excess deaths are defined as the number of persons who have died from all causes, in excess of the expected number of deaths for a given place and time. This report describes trends and demographic patterns in excess deaths during January 26-October 3, 2020. Expected numbers of deaths were estimated using overdispersed Poisson regression models with spline terms to account for seasonal patterns, using provisional mortality data from CDC’s National Vital Statistics System (NVSS) (7). Weekly numbers of deaths by age group and race/ethnicity were assessed to examine the difference between the weekly number of deaths occurring in 2020 and the average number occurring in the same week during 2015-2019 and the percentage change in 2020. Overall, an estimated 299,028 excess deaths have occurred in the United States from late January through October 3, 2020, with two thirds of these attributed to COVID-19. The largest percentage increases were seen among adults aged 25-44 years and among Hispanic or Latino (Hispanic) persons. These results provide information about the degree to which COVID-19 deaths might be underascertained and inform efforts to prevent mortality directly or indirectly associated with the COVID-19 pandemic, such as efforts to minimize disruptions to health care.


Crowded indoor environments, such as households, are high-risk settings for the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Limited data are available about transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), among youths. During June 17-20, an overnight camp in Georgia (camp A) held orientation for 138 trainees and 120 staff members; staff members remained for the first camp session, scheduled during June 21-27, and were joined by 363 campers and three senior staff members on June 21. Camp A adhered to the measures in Georgia’s Executive Order* that allowed overnight camps to operate beginning on May 31, including requiring all trainees, staff members, and campers to provide documentation of a negative viral SARS-CoV-2 test ≤12 days before arriving. Camp A adopted most† components of CDC’s Suggestions for Youth and Summer Camps§ to minimize the risk for SARS-CoV-2 introduction and transmission. Measures not implemented were cloth masks for campers and opening windows and doors for increased ventilation in buildings. Cloth masks were required for staff members. Camp attendees were cohorted by cabin and engaged in a variety of indoor and outdoor activities, including daily vigorous singing and cheering. On June 23, a teenage staff member left camp A after developing chills the previous evening. The staff member was tested and reported a positive test result for SARS-CoV-2 the following day (June 24). Camp A officials began sending campers home on June 24 and closed the camp on June 27. On June 25, the Georgia Department of Public Health (DPH) was notified and initiated an investigation. DPH recommended that all attendees be tested and self-quarantine, and isolate if they had a positive test result.


Data sharing: The data obtained as part of this study are available from the corresponding author upon reasonable request.