Discover the most talked about and latest scientific content & concepts.


Agriculture is a major contributor to global greenhouse gas (GHG) emissions and must feature in efforts to reduce emissions. Organic farming might contribute to this through decreased use of farm inputs and increased soil carbon sequestration, but it might also exacerbate emissions through greater food production elsewhere to make up for lower organic yields. To date there has been no rigorous assessment of this potential at national scales. Here we assess the consequences for net GHG emissions of a 100% shift to organic food production in England and Wales using life-cycle assessment. We predict major shortfalls in production of most agricultural products against a conventional baseline. Direct GHG emissions are reduced with organic farming, but when increased overseas land use to compensate for shortfalls in domestic supply are factored in, net emissions are greater. Enhanced soil carbon sequestration could offset only a small part of the higher overseas emissions.


In August 2019, the Utah Department of Health (UDOH) received reports from health care providers of several cases of lung injury in persons who reported use of electronic cigarette (e-cigarette), or vaping, products (1,2). To describe the characteristics of medical care, potentially related conditions, and exposures among 83 patients in Utah, detailed medical abstractions were completed for 79 (95%) patients. Among patients receiving chart abstractions, 70 (89%) were hospitalized, 39 (49%) required breathing assistance, and many reported preexisting respiratory and mental health conditions. Interviews were conducted by telephone or in person with 53 (64%) patients or their proxies, and product samples from eight (15%) of the interviewed patients or proxies were tested. Among 53 interviewed patients, all of whom reported using e-cigarette, or vaping, products within 3 months of acute lung injury, 49 (92%) reported using any products containing tetrohydrocannabinol (THC), the principal psychoactive component of cannabis; 35 (66%) reported using any nicotine-containing products, and 32 (60%) reported using both. As reported in Wisconsin and Illinois (1), most THC-containing products were acquired from informal sources such as friends or illicit in-person and online dealers. THC-containing products were most commonly used one to five times per day, whereas nicotine-containing products were most commonly used >25 times per day. Product sample testing at the Utah Public Health Laboratory (UPHL) showed evidence of vitamin E acetate in 17 of 20 (89%) THC-containing cartridges, which were provided by six of 53 interviewed patients. The cause or causes of this outbreak is currently unknown (2); however, the predominant use among patients of e-cigarette, or vaping, products with prefilled THC-containing cartridges suggests that the substances in these products or the way in which they are heated and aerosolized play an important role in the outbreak. At present, persons should not use e-cigarette, or vaping, products that contain THC. In addition, because the specific cause or causes of lung injury are not yet known and while the investigation continues, persons should consider refraining from use of all e-cigarette, or vaping, products.


To evaluate whether calorie labeling of menus in large restaurant chains was associated with a change in mean calories purchased per transaction.


Human listeners exhibit marked sensitivity to familiar music, perhaps most readily revealed by popular “name that tune” games, in which listeners often succeed in recognizing a familiar song based on extremely brief presentation. In this work, we used electroencephalography (EEG) and pupillometry to reveal the temporal signatures of the brain processes that allow differentiation between a familiar, well liked, and unfamiliar piece of music. In contrast to previous work, which has quantified gradual changes in pupil diameter (the so-called “pupil dilation response”), here we focus on the occurrence of pupil dilation events. This approach is substantially more sensitive in the temporal domain and allowed us to tap early activity with the putative salience network. Participants (N = 10) passively listened to snippets (750 ms) of a familiar, personally relevant and, an acoustically matched, unfamiliar song, presented in random order. A group of control participants (N = 12), who were unfamiliar with all of the songs, was also tested. We reveal a rapid differentiation between snippets from familiar and unfamiliar songs: Pupil responses showed greater dilation rate to familiar music from 100-300 ms post-stimulus-onset, consistent with a faster activation of the autonomic salience network. Brain responses measured with EEG showed a later differentiation between familiar and unfamiliar music from 350 ms post onset. Remarkably, the cluster pattern identified in the EEG response is very similar to that commonly found in the classic old/new memory retrieval paradigms, suggesting that the recognition of brief, randomly presented, music snippets, draws on similar processes.


Interactions and coordination between conspecific individuals have produced a remarkable variety of collective behaviours. This co-operation occurs in vertebrate and invertebrate animals and is well expressed in the group flight of birds, fish shoals and highly organized activities of social insects. How individuals interact and why they co-operate to constitute group-level patterns has been extensively studied in extant animals through a variety mechanistic, functional and theoretical approaches. Although collective and social behaviour evolved through natural selection over millions of years, its origin and early history has remained largely unknown. In-situ monospecific linear clusters of trilobite arthropods from the lower Ordovician (ca 480 Ma) of Morocco are interpreted here as resulting either from a collective behaviour triggered by hydrodynamic cues in which mechanical stimulation detected by motion and touch sensors may have played a major role, or from a possible seasonal reproduction behaviour leading to the migration of sexually mature conspecifics to spawning grounds, possibly driven by chemical attraction (e.g. pheromones). This study confirms that collective behaviour has a very ancient origin and probably developed throughout the Cambrian-Ordovician interval, at the same time as the first animal radiation events.


The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor1. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits2-7 to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy8-14 for this specific computational task, heralding a much-anticipated computing paradigm.


Short telomeres trigger age-related pathologies and shorter lifespans in mice and humans. In the past, we generated mouse embryonic (ES) cells with longer telomeres than normal (hyper-long telomeres) in the absence of genetic manipulations, which contributed to all mouse tissues. To address whether hyper-long telomeres have deleterious effects, we generated mice in which 100% of their cells are derived from hyper-long telomere ES cells. We observe that these mice have longer telomeres and less DNA damage with aging. Hyper-long telomere mice are lean and show low cholesterol and LDL levels, as well as improved glucose and insulin tolerance. Hyper-long telomere mice also have less incidence of cancer and an increased longevity. These findings demonstrate that longer telomeres than normal in a given species are not deleterious but instead, show beneficial effects.


A rapid transition away from unabated coal use is essential to fulfilling the Paris climate goals. However, many countries are actively building and operating coal power plants. Here we use plant-level data to specify alternative trajectories for coal technologies in an integrated assessment model. We then quantify cost-effective retirement pathways for global and country-level coal fleets to limit long-term temperature change. We present our results using a decision-relevant metric: the operational lifetime limit. Even if no new plants are built, the lifetimes of existing units are reduced to approximately 35 years in a well-below 2 °C scenario or 20 years in a 1.5 °C scenario. The risk of continued coal expansion, including the near-term growth permitted in some Nationally Determined Contributions (NDCs), is large. The lifetime limits for both 2 °C and 1.5 °C are reduced by 5 years if plants under construction come online and 10 years if all proposed projects are built.


Mass extinction at the Cretaceous-Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth system modeling, indicate that a partial ∼50% reduction in global marine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario reconciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which marine life imprints its isotopic signal onto the geological record.


A wasp mimicking praying mantis (Mantodea) of the early evolving Mantoididae family was discovered in 2013 at a research station near the Amazon River in Northern Peru. This adult specimen exhibited a striking bright red/orange and black coloration pattern that was undocumented in all known praying mantis species. We tested the status of this new specimen using external morphology, male genital dissections, and geographic distribution. Our findings demonstrate the specimen to represent a new species, Vespamantoida wherleyi gen. nov. sp. nov., that is closely allied with a recently described species, Mantoida toulgoeti Roy, 2010, both of which are included within the newly erected genus. To support our actions, we present high resolution images of museum preserved and living specimens, morphological illustrations, a generic-level distribution map, and recorded video of the behavior of the holotype taken in the field at the time of collection. The bright red/orange coloration contrasted with black markings, the general appearance of a hymenopteran that includes a narrowed wasp waist, and the locomotory patterns and antennal movements mark this newly discovered species as unique among all hymenopteran mimicking Mantoididae as well as all other praying mantises.