Discover the most talked about and latest scientific content & concepts.


Since the 1950s, industrial fisheries have expanded globally, as fishing vessels are required to travel further afield for fishing opportunities. Technological advancements and fishery subsidies have granted ever-increasing access to populations of sharks, tunas, billfishes, and other predators. Wilderness refuges, defined here as areas beyond the detectable range of human influence, are therefore increasingly rare. In order to achieve marine resources sustainability, large no-take marine protected areas (MPAs) with pelagic components are being implemented. However, such conservation efforts require knowledge of the critical habitats for predators, both across shallow reefs and the deeper ocean. Here, we fill this gap in knowledge across the Indo-Pacific by using 1,041 midwater baited videos to survey sharks and other pelagic predators such as rainbow runner (Elagatis bipinnulata), mahi-mahi (Coryphaena hippurus), and black marlin (Istiompax indica). We modeled three key predator community attributes: vertebrate species richness, mean maximum body size, and shark abundance as a function of geomorphology, environmental conditions, and human pressures. All attributes were primarily driven by geomorphology (35%-62% variance explained) and environmental conditions (14%-49%). While human pressures had no influence on species richness, both body size and shark abundance responded strongly to distance to human markets (12%-20%). Refuges were identified at more than 1,250 km from human markets for body size and for shark abundance. These refuges were identified as remote and shallow seabed features, such as seamounts, submerged banks, and reefs. Worryingly, hotpots of large individuals and of shark abundance are presently under-represented within no-take MPAs that aim to effectively protect marine predators, such as the British Indian Ocean Territory. Population recovery of predators is unlikely to occur without strategic placement and effective enforcement of large no-take MPAs in both coastal and remote locations.


The rise of antibiotic resistance (AMR) is one of the most important public health threats worldwide.Today, increasing attention is being paid to multidrug resistant staphylococci isolated from healthcare and non-healthcare environments as the treatment of these bacteria has become increasingly difficult. In this study, we compared staphylococci isolates recovered from high frequency touched surfaces from public areas in the community and hospitals in East and West London. 281 out of 600 (46.83%) staphylococci isolates recovered were multidrug resistant, of which 49 (8.17%) were mecA positive. There was significantly higher proportion of multidrug resistant staphylococci (P = 0.0002) in East London (56.7%) compared to West London (49.96%). The most common species identified as multidrug resistant were S. epidermidis, S. haemolyticus and S. hominis, whereas penicillin, fusidic acid and erythromycin were the most frequent antibiotics the isolates were resistant to. Whole genome sequenced of mecA positive isolates revealed that S. sciuri isolates carried the mecA1 gene, which has only 84.43% homology with mecA. In addition, other frequently identified resistance genes included blaZ, qacA/B and dfrC. We have also identified a diverse range of SCCmec types, many of which were untypable due to carrying a novel combination of ccr genes or multiple ccr complexes.


Ageing is associated with attenuated autonomic function. Transcutaneous vagal nerve stimulation (tVNS) improved autonomic function in healthy young participants. We therefore investigated the effects of a single session of tVNS (studies 1 and 2) and tVNS administered daily for two weeks (study 3) in volunteers aged ≥ 55 years. tVNS was performed using modified surface electrodes on the tragus and connected to a transcutaneous electrical nerve stimulation (TENS) machine. Study 1: participants (n=14) received a single session of tVNS and sham. Study 2: all participants (n=51) underwent a single session of tVNS. Study 3: participants (n=29) received daily tVNS for two weeks. Heart rate variability and baroreflex sensitivity were derived. Quality of life (QoL), mood and sleep were assessed in study 3. tVNS promoted increases in measures of vagal tone and was associated with greater increases in baroreflex sensitivity than sham. Two weeks of daily tVNS improved measures of autonomic function, and some aspects of QoL, mood and sleep. Importantly, findings showed that improvements in measures of autonomic balance were more pronounced in participants with greater baseline sympathetic prevalence. This suggests it may be possible to identify individuals who are likely to encounter significant benefits from tVNS.


While cognitive behavioral therapy (CBT) is an effective treatment for major depressive disorder, only up to 45% of depressed patients will respond to it. At present, there is no clinically viable neuroimaging predictor of CBT response. Notably, the lack of a mechanistic understanding of treatment response has hindered identification of predictive biomarkers. To obtain mechanistically meaningful fMRI predictors of CBT response, we capitalize on pretreatment neural activity encoding a weighted reward prediction error (RPE), which is implicated in the acquisition and processing of feedback information during probabilistic learning. Using a conventional mass-univariate fMRI analysis, we demonstrate that, at the group level, responders exhibit greater pretreatment neural activity encoding a weighted RPE in the right striatum and right amygdala. Crucially, using multivariate methods, we show that this activity offers significant out-of-sample classification of treatment response. Our findings support the feasibility and validity of neurocomputational approaches to treatment prediction in psychiatry.


Although the relationship between residential food environments and health outcomes have been extensively studied, the relationship between body mass index (BMI) and multiple food environments have not been fully explored. We examined the relationship between characteristics of three distinct food environments and BMI among elementary school employees in the metropolitan area of New Orleans, LA. We assessed the food environments around the residential and worksite neighborhoods and the commuting corridors.


Introducing hierarchical pore structure to microporous materials such as metal-organic frameworks (MOFs) can be beneficial for reactions where the rate of reaction is limited by low rates of diffusion or high pressure drop. This advantageous pore structure can be obtained by defect formation, mostly via post-synthetic acid etching, which has been studied extensively on water-stable MOFs. Here we show that a water-unstable HKUST-1 MOF can also be modified in a corresponding manner by using phosphoric acid as a size-selective etching agent and a mixture of dimethyl sulfoxide and methanol as a dilute solvent. Interestingly, we demonstrate that the etching process which is time- and acidity- dependent, can result in formation of defective HKUST-1 with extra interconnected hexagonal macropores without compromising on the bulk crystallinity. These findings suggest an intelligent scalable synthetic method for formation of hierarchical porosity in MOFs that are prone to hydrolysis, for improved molecular accessibility and diffusion for catalysis.


Genomic medicine has paved the way for identifying biomarkers and therapeutically actionable targets for complex diseases, but is complicated by the involvement of thousands of variably expressed genes across multiple cell types. Single-cell RNA-sequencing study (scRNA-seq) allows the characterization of such complex changes in whole organs.


Host resistance through immune clearance is predicted to favor pathogens that are able to transmit faster and are hence more virulent. Increasing pathogen virulence is, in turn, typically assumed to be mediated by increasing replication rates. However, experiments designed to test how pathogen virulence and replication rates evolve in response to increasing host resistance, as well as the relationship between the two, are rare and lacking for naturally evolving host-pathogen interactions. We inoculated 55 isolates of Mycoplasma gallisepticum, collected over 20 y from outbreak, into house finches (Haemorhous mexicanus) from disease-unexposed populations, which have not evolved protective immunity to M. gallisepticum We show using 3 different metrics of virulence (body mass loss, symptom severity, and putative mortality rate) that virulence has increased linearly over >150,000 bacterial generations since outbreak (1994 to 2015). By contrast, while replication rates increased from outbreak to the initial spread of resistance (1994 to 2004), no further increases have occurred subsequently (2007 to 2015). Finally, as a consequence, we found that any potential mediating effect of replication rate on virulence evolution was restricted to the period when host resistance was initially increasing in the population. Taken together, our results show that pathogen virulence and replication rates can evolve independently, particularly after the initial spread of host resistance. We hypothesize that the evolution of pathogen virulence can be driven primarily by processes such as immune manipulation after resistance spreads in host populations.


Gastric acid suppression promotes allergy in mechanistic animal experiments and observational human studies, but whether gastric acid inhibitors increase allergy incidence at a population level remains uncharacterized. Here we aim to assess the use of anti-allergic medication following prescription of gastric acid inhibitors. We analyze data from health insurance records covering 97% of Austrian population between 2009 and 2013 on prescriptions of gastric acid inhibitors, anti-allergic drugs, or other commonly prescribed (lipid-modifying and antihypertensive) drugs as controls. Here we show that rate ratios for anti-allergic following gastric acid-inhibiting drug prescriptions are 1.96 (95%CI:1.95-1.97) and 3.07 (95%-CI:2.89-3.27) in an overall and regional Austrian dataset. These findings are more prominent in women and occur for all assessed gastric acid-inhibiting substances. Rate ratios increase from 1.47 (95%CI:1.45-1.49) in subjects <20 years, to 5.20 (95%-CI:5.15-5.25) in > 60 year olds. We report an epidemiologic relationship between gastric acid-suppression and development of allergic symptoms.


We present a method for calculating the Acute Insecticide Toxicity Loading (AITL) on US agricultural lands and surrounding areas and an assessment of the changes in AITL from 1992 through 2014. The AITL method accounts for the total mass of insecticides used in the US, acute toxicity to insects using honey bee contact and oral LD50 as reference values for arthropod toxicity, and the environmental persistence of the pesticides. This screening analysis shows that the types of synthetic insecticides applied to agricultural lands have fundamentally shifted over the last two decades from predominantly organophosphorus and N-methyl carbamate pesticides to a mix dominated by neonicotinoids and pyrethroids. The neonicotinoids are generally applied to US agricultural land at lower application rates per acre; however, they are considerably more toxic to insects and generally persist longer in the environment. We found a 48- and 4-fold increase in AITL from 1992 to 2014 for oral and contact toxicity, respectively. Neonicotinoids are primarily responsible for this increase, representing between 61 to nearly 99 percent of the total toxicity loading in 2014. The crops most responsible for the increase in AITL are corn and soybeans, with particularly large increases in relative soybean contributions to AITL between 2010 and 2014. Oral exposures are of potentially greater concern because of the relatively higher toxicity (low LD50s) and greater likelihood of exposure from residues in pollen, nectar, guttation water, and other environmental media. Using AITL to assess oral toxicity by class of pesticide, the neonicotinoids accounted for nearly 92 percent of total AITL from 1992 to 2014. Chlorpyrifos, the fifth most widely used insecticide during this time contributed just 1.4 percent of total AITL based on oral LD50s. Although we use some simplifying assumptions, our screening analysis demonstrates an increase in pesticide toxicity loading over the past 26 years, which potentially threatens the health of honey bees and other pollinators and may contribute to declines in beneficial insect populations as well as insectivorous birds and other insect consumers.