Discover the most talked about and latest scientific content & concepts.

Concept: Zygote


Sperm are highly differentiated and the activities that reprogram them for embryonic development during fertilization have historically been considered unique to the oocyte. We here challenge this view and demonstrate that mouse embryos in the mitotic cell cycle can also directly reprogram sperm for full-term development. Developmentally incompetent haploid embryos (parthenogenotes) injected with sperm developed to produce healthy offspring at up to 24% of control rates, depending when in the embryonic cell cycle injection took place. This implies that most of the first embryonic cell cycle can be bypassed in sperm genome reprogramming for full development. Remodelling of histones and genomic 5'-methylcytosine and 5'-hydroxymethylcytosine following embryo injection were distinct from remodelling in fertilization and the resulting 2-cell embryos consistently possessed abnormal transcriptomes. These studies demonstrate plasticity in the reprogramming of terminally differentiated sperm nuclei and suggest that different epigenetic pathways or kinetics can establish totipotency.

Concepts: Gene, Genetics, Cell nucleus, Embryo, Developmental biology, Embryology, Meiosis, Zygote


Development of assisted reproductive technologies (ART) in the dog has resisted progress for decades, due to their unique reproductive physiology. This lack of progress is remarkable given the critical role ART could play in conserving endangered canid species or eradicating heritable disease through gene-editing technologies-an approach that would also advance the dog as a biomedical model. Over 350 heritable disorders/traits in dogs are homologous with human conditions, almost twice the number of any other species. Here we report the first live births from in vitro fertilized embryos in the dog. Adding to the practical significance, these embryos had also been cryopreserved. Changes in handling of both gametes enabled this progress. The medium previously used to capacitate sperm excluded magnesium because it delayed spontaneous acrosome exocytosis. We found that magnesium significantly enhanced sperm hyperactivation and ability to undergo physiologically-induced acrosome exocytosis, two functions essential to fertilize an egg. Unlike other mammals, dogs ovulate a primary oocyte, which reaches metaphase II on Days 4-5 after the luteinizing hormone (LH) surge. We found that only on Day 6 are oocytes consistently able to be fertilized. In vitro fertilization of Day 6 oocytes with sperm capacitated in medium supplemented with magnesium resulted in high rates of embryo development (78.8%, n = 146). Intra-oviductal transfer of nineteen cryopreserved, in vitro fertilization (IVF)-derived embryos resulted in seven live, healthy puppies. Development of IVF enables modern genetic approaches to be applied more efficiently in dogs, and for gamete rescue to conserve endangered canid species.

Concepts: Reproduction, Spermatozoon, In vitro fertilisation, Meiosis, Ovulation, Zygote, Dog, Canidae


Experimental ooplasmic transplantation from donor to recipient oocyte took place between 1996 and 2001 at Saint Barnabas Medical Center, USA. Indication for 33 patients was repeated implantation failure. Thirteen couples had 17 babies. One patient delivered twins from mixed ooplasmic and donor egg embryos. A limited survey-based follow-up study on the children is reported: 12 out of 13 parents completed a questionnaire on pregnancy, birth, health, academic performance and disclosure. Parents of a quadruplet did not participate. Prenatal development and delivery were uneventful. School grades ranged from good to excellent. Children were of good health. Body mass index (BMI) was normal in 12 out of 13 children. One child had chronic migraine headaches, two mild asthma, three minor vision and three minor skin problems. One boy from a boy/girl twin was diagnosed with borderline pervasive developmental disorder - not otherwise specified at age 18 months, but with no later symptoms. One couple disclosed the use of egg donor to their child. One reported intention to disclose; six were undecided and four reported they would not disclose. This limited follow-up strategy presents a high risk of bias. Parents may not assent to standardized clinical analysis owing to lack of disclosure to their children.

Concepts: Pregnancy, Childbirth, Asthma, Embryo, Body mass index, Pervasive developmental disorder, Implantation, Zygote


The objective was to estimate the heritability for height and weight during fetal life and early childhood in two independent studies, one including parent and singleton offsprings and one of mono- and dizygotic twins.

Concepts: Pregnancy, Reproduction, Twin, Twins, Zygote, Monozygotic, Cândido Godói, Singleton


Background Ovarian aging and cytotoxic treatments are the most common causes for fertility loss in women. With increasing numbers of young female survivors following cytotoxic cancer treatments, the issue of fertility preservation has assumed greater importance. Methods We review the literature on the causes of female fertility loss as well as the recent advances in fertility preservation options and strategies that might be of interest to oncologists. Currently, several methods and techniques exist for fertility preservation of female patients with cancer including embryo freezing, ovarian protection techniques, oocyte cryopreservation, ovarian tissue cryopreservation followed by autotransplantation, and recently in vitro culture of ovarian tissue, follicles, and oocytes. Each method or technique has advantages and disadvantages related to current success rate, required delay in cancer treatment, sperm requirement, and risk of reintroducing cancer cells. Results To date, embryo freezing is the only established method successfully and widely used for fertility preservation of female patients with cancer. The other methods are promising but still considered experimental. Conclusion Patient awareness, physician knowledge, early counseling, costs management, international registry, interdisciplinary networks, and research development are necessary to improve the current care in the field of female fertility preservation.

Concepts: Cancer, Oncology, Fertility, Spermatozoon, Zygote, Cryobiology, Cryopreservation, Oocyte cryopreservation


Despite a strict requirement for sterol removal for sperm to undergo acrosome exocytosis (AE), the mechanisms by which changes in membrane sterols are transduced into changes in sperm fertilization competence are poorly understood. We have previously shown in live murine sperm that the plasma membrane overlying the acrosome (APM) contains several types of micro-domains known as membrane rafts. When characterizing the membrane raft-associated proteomes, we identified phospholipase B (PLB), a calcium-independent enzyme exhibiting multiple activities. Here, we show that sperm surface PLB is activated in response to sterol removal. Both biochemical activity assays and immunoblots of sub-cellular fractions of sperm incubated with the sterol acceptor 2-hydroxypropyl-β-cyclodextrin (2-OHCD) confirmed the release of an active PLB fragment. Specific protease inhibitors prevented PLB activation, revealing a mechanistic requirement for proteolytic cleavage. Competitive inhibitors of PLB reduced both the ability of sperm to undergo AE and to fertilize oocytes in vitro, suggesting an important role in fertilization. This was reinforced by our finding that incubation with either protein concentrate released from 2-OHCD-treated sperm, or with recombinant PLB peptide corresponding to the catalytic domain, were both able to induce AE in the absence of other stimuli. Together, these results lead us to propose a novel mechanism by which sterol removal promotes membrane fusogenicity and AE, helping confer fertilization competence. Importantly, this mechanism provides a basis for the newly emerging model of AE in which membrane fusions occur during capacitation/transit through the cumulus, prior to any physical contact between the sperm and the oocyte’s zona pellucida.

Concepts: Enzyme, Cell membrane, Enzyme inhibitor, Spermatozoon, In vitro fertilisation, Protease, Zona pellucida, Zygote


Twin studies that focus on the correlation in age-at-death between twin pairs have yielded important insights into the heritability and role of genetic factors in determining lifespan, but less attention is paid to the biological and social role of zygosity itself in determining survival across the entire life course. Using data from the Danish Twin Registry and the Human Mortality Database, we show that monozygotic twins have greater cumulative survival proportions at nearly every age compared to dizygotic twins and the Danish general population. We examine this survival advantage by fitting these data with a two-process mortality model that partitions survivorship patterns into extrinsic and intrinsic mortality processes roughly corresponding to acute, environmental and chronic, biological origins. We find intrinsic processes confer a survival advantage at older ages for males, while at younger ages, all monozygotic twins show a health protection effect against extrinsic death akin to a marriage protection effect. While existing research suggests an increasingly important role for genetic factors at very advanced ages, we conclude that the social closeness of monozygotic twins is a plausible driver of the survival advantage at ages <65.

Concepts: Genetics, Reproduction, Twin, Twins, Zygote, Monozygotic, Cândido Godói


Despite the increasing interest in twin studies and the stunning amount of research on face recognition, the ability of adult identical twins to discriminate their own faces from those of their co-twins has been scarcely investigated. One’s own face is the most distinctive feature of the bodily self, and people typically show a clear advantage in recognizing their own face even more than other very familiar identities. Given the very high level of resemblance of their faces, monozygotic twins represent a unique model for exploring self-face processing. Herein we examined the ability of monozygotic twins to distinguish their own face from the face of their co-twin and of a highly familiar individual. Results show that twins equally recognize their own face and their twin’s face. This lack of self-face advantage was negatively predicted by how much they felt physically similar to their co-twin and by their anxious or avoidant attachment style. We speculate that in monozygotic twins, the visual representation of the self-face overlaps with that of the co-twin. Thus, to distinguish the self from the co-twin, monozygotic twins have to rely much more than control participants on the multisensory integration processes upon which the sense of bodily self is based. Moreover, in keeping with the notion that attachment style influences perception of self and significant others, we propose that the observed self/co-twin confusion may depend upon insecure attachment.

Concepts: Twin, Twins, Zygote, Attachment theory, Monozygotic, Attachment in adults, Cândido Godói


Quantifying differences or similarities in connectomes has been a challenge due to the immense complexity of global brain networks. Here we introduce a noninvasive method that uses diffusion MRI to characterize whole-brain white matter architecture as a single local connectome fingerprint that allows for a direct comparison between structural connectomes. In four independently acquired data sets with repeated scans (total N = 213), we show that the local connectome fingerprint is highly specific to an individual, allowing for an accurate self-versus-others classification that achieved 100% accuracy across 17,398 identification tests. The estimated classification error was approximately one thousand times smaller than fingerprints derived from diffusivity-based measures or region-to-region connectivity patterns for repeat scans acquired within 3 months. The local connectome fingerprint also revealed neuroplasticity within an individual reflected as a decreasing trend in self-similarity across time, whereas this change was not observed in the diffusivity measures. Moreover, the local connectome fingerprint can be used as a phenotypic marker, revealing 12.51% similarity between monozygotic twins, 5.14% between dizygotic twins, and 4.51% between none-twin siblings, relative to differences between unrelated subjects. This novel approach opens a new door for probing the influence of pathological, genetic, social, or environmental factors on the unique configuration of the human connectome.

Concepts: Twin, Twins, Zygote, Monozygotic, Cândido Godói


Mutations in mitochondrial DNA (mtDNA) are maternally inherited and can cause fatal or debilitating mitochondrial disorders. The severity of clinical symptoms is often associated with the level of mtDNA mutation load or degree of heteroplasmy. Current clinical options to prevent transmission of mtDNA mutations to offspring are limited. Experimental spindle transfer in metaphase II oocytes, also called mitochondrial replacement therapy, is a novel technology for preventing mtDNA transmission from oocytes to pre-implantation embryos. Here, we report a female carrier of Leigh syndrome (mtDNA mutation 8993T > G), with a long history of multiple undiagnosed pregnancy losses and deaths of offspring as a result of this disease, who underwent IVF after reconstitution of her oocytes by spindle transfer into the cytoplasm of enucleated donor oocytes. A male euploid blastocyst wasobtained from the reconstituted oocytes, which had only a 5.7% mtDNA mutation load. Transfer of the embryo resulted in a pregnancy with delivery of a boy with neonatal mtDNA mutation load of 2.36-9.23% in his tested tissues. The boy is currently healthy at 7 months of age, although long-term follow-up of the child’s longitudinal development remains crucial.

Concepts: DNA, Pregnancy, Mitochondrion, Mitochondrial DNA, Meiosis, Zygote, Human mitochondrial genetics, Mitochondrial disease