SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Zoonosis

175

Hantaviruses are among the most important zoonotic pathogens of humans and the subject of heightened global attention. Despite the importance of hantaviruses for public health, there is no consensus on their evolutionary history and especially the frequency of virus-host co-divergence versus cross-species virus transmission. Documenting the extent of hantavirus biodiversity, and particularly their range of mammalian hosts, is critical to resolving this issue. Here, we describe four novel hantaviruses (Huangpi virus, Lianghe virus, Longquan virus, and Yakeshi virus) sampled from bats and shrews in China, and which are distinct from other known hantaviruses. Huangpi virus was found in Pipistrellus abramus, Lianghe virus in Anourosorex squamipes, Longquan virus in Rhinolophus affinis, Rhinolophus sinicus, and Rhinolophus monoceros, and Yakeshi virus in Sorex isodon, respectively. A phylogenetic analysis of the available diversity of hantaviruses reveals the existence of four phylogroups that infect a range of mammalian hosts, as well as the occurrence of ancient reassortment events between the phylogroups. Notably, the phylogenetic histories of the viruses are not always congruent with those of their hosts, suggesting that cross-species transmission has played a major role during hantavirus evolution and at all taxonomic levels, although we also noted some evidence for virus-host co-divergence. Our phylogenetic analysis also suggests that hantaviruses might have first appeared in Chiroptera (bats) or Soricomorpha (moles and shrews), before emerging in rodent species. Overall, these data indicate that bats are likely to be important natural reservoir hosts of hantaviruses.

Concepts: Evolution, Microbiology, Species, Mammal, Rodent, Bat, Zoonosis, Natural reservoir

169

Lyme disease is an underdiagnosed zoonosis in Brazil. There are no cases registered in the state of Tocantins, the newest Brazilian state. The cases of three patients in contact with rural areas in three Tocantins' districts are herein described, and the Brazilian literature is reviewed.

Concepts: Lyme disease, Brazil, Zoonosis, Goiás, Maranhão, States of Brazil, Zoonoses

168

BACKGROUND: Glanders is a contagious and fatal zoonotic disease of solipeds caused by the Gram-negative bacterium Burkholderia (B.) mallei. Although regulations call for culling of diseased animals, certain situations e.g. wild life conservation, highly valuable breeding stock, could benefit from effective treatment schemes and post-exposure prophylaxis. RESULTS: Twenty three culture positive glanderous horses were successfully treated during a confined outbreak by applying a treatment protocol of 12 weeks duration based on the parenteral administration of enrofloxacin and trimethoprim plus sulfadiazine, followed by the oral administration of doxycycline. Induction of immunosupression in six randomly chosen horses after completion of treatment did not lead to recrudescence of disease. CONCLUSION: This study demonstrates that long term treatment of glanderous horses with a combination of various antibiotics seems to eliminate the agent from the organism. However, more studies are needed to test the effectiveness of this treatment regime on B. mallei strains from different endemic regions. Due to its cost and duration, this treatment can only be an option in certain situations and should not replace the current “testing and culling” policy, in conjunction with adequate compensation to prevent spreading of disease.

Concepts: HIV, Epidemiology, Infectious disease, Malaria, Lyme disease, Burkholderia mallei, Zoonosis, Glanders

166

BACKGROUND: Canine Visceral Leishmaniasis (CVL) is a zoonotic disease caused by Leishmania infantum, transmitted by the bite of Lutzomyia longipalpis sand flies. Dogs are the main domestic reservoir of the parasite. The establishment of an experimental model that partially reproduces natural infection in dogs is very important to test vaccine candidates, mainly regarding those that use salivary proteins from the vector and new therapeutical approaches. METHODOLOGYPRINCIPAL FINDINGS: In this report, we describe an experimental infection in dogs, using intradermal injection of Leishmania infantum plus salivary gland homogenate (SGH) of Lutzomyia longipalpis. Thirty-five dogs were infected with 1×10(7) parasites combined with five pairs of Lutzomyia longipalpis salivary glands and followed for 450 days after infection and clinical, immunological and parasitological parameters were evaluated. Two hundred and ten days after infection we observed that 31,4% of dogs did not display detectable levels of anti-Leishmania antibodies but all presented different numbers of parasites in the lymph nodes. Animals with a positive xenodiagnosis had at least 3,35×10(5) parasites in their lymph nodes. An increase of IFN-γ and IL-10 levels was detected during infection. Twenty two percent of dogs developed symptoms of CVL during infection. CONCLUSION: The infection model described here shows some degree of similarity when compared with naturally infected dogs opening new perspectives for the study of CVL using an experimental model that employs the combination of parasites and sand fly saliva both present during natural transmission.

Concepts: Immune system, Saliva, Leishmaniasis, Leishmania, Glands, Salivary gland, Zoonosis, Phlebotominae

135

The increasing frequency of zoonotic disease events underscores a need to develop forecasting tools toward a more preemptive approach to outbreak investigation. We apply machine learning to data describing the traits and zoonotic pathogen diversity of the most speciose group of mammals, the rodents, which also comprise a disproportionate number of zoonotic disease reservoirs. Our models predict reservoir status in this group with over 90% accuracy, identifying species with high probabilities of harboring undiscovered zoonotic pathogens based on trait profiles that may serve as rules of thumb to distinguish reservoirs from nonreservoir species. Key predictors of zoonotic reservoirs include biogeographical properties, such as range size, as well as intrinsic host traits associated with lifetime reproductive output. Predicted hotspots of novel rodent reservoir diversity occur in the Middle East and Central Asia and the Midwestern United States.

Concepts: Epidemiology, Prediction, Future, Middle East, Asia, Bat, Zoonosis, Central Asia

111

ABSTRACT The majority of emerging zoonoses originate in wildlife, and many are caused by viruses. However, there are no rigorous estimates of total viral diversity (here termed “virodiversity”) for any wildlife species, despite the utility of this to future surveillance and control of emerging zoonoses. In this case study, we repeatedly sampled a mammalian wildlife host known to harbor emerging zoonotic pathogens (the Indian Flying Fox, Pteropus giganteus) and used PCR with degenerate viral family-level primers to discover and analyze the occurrence patterns of 55 viruses from nine viral families. We then adapted statistical techniques used to estimate biodiversity in vertebrates and plants and estimated the total viral richness of these nine families in P. giganteus to be 58 viruses. Our analyses demonstrate proof-of-concept of a strategy for estimating viral richness and provide the first statistically supported estimate of the number of undiscovered viruses in a mammalian host. We used a simple extrapolation to estimate that there are a minimum of 320,000 mammalian viruses awaiting discovery within these nine families, assuming all species harbor a similar number of viruses, with minimal turnover between host species. We estimate the cost of discovering these viruses to be ~$6.3 billion (or ~$1.4 billion for 85% of the total diversity), which if annualized over a 10-year study time frame would represent a small fraction of the cost of many pandemic zoonoses. IMPORTANCE Recent years have seen a dramatic increase in viral discovery efforts. However, most lack rigorous systematic design, which limits our ability to understand viral diversity and its ecological drivers and reduces their value to public health intervention. Here, we present a new framework for the discovery of novel viruses in wildlife and use it to make the first-ever estimate of the number of viruses that exist in a mammalian host. As pathogens continue to emerge from wildlife, this estimate allows us to put preliminary bounds around the potential size of the total zoonotic pool and facilitates a better understanding of where best to allocate resources for the subsequent discovery of global viral diversity.

Concepts: Biodiversity, Statistics, Mathematics, Species, Estimation, Wildlife, Zoonosis, Pteropus

84

Nipah virus (NiV) is a paramyxovirus, and Pteropus spp. bats are the natural reservoir. From December 2010 through March 2014, hospital-based encephalitis surveillance in Bangladesh identified 18 clusters of NiV infection. The source of infection for case-patients in 3 clusters in 2 districts was unknown. A team of epidemiologists and anthropologists investigated these 3 clusters comprising 14 case-patients, 8 of whom died. Among the 14 case-patients, 8 drank fermented date palm sap (tari) regularly before their illness, and 6 provided care to a person infected with NiV. The process of preparing date palm trees for tari production was similar to the process of collecting date palm sap for fresh consumption. Bat excreta was reportedly found inside pots used to make tari. These findings suggest that drinking tari is a potential pathway of NiV transmission. Interventions that prevent bat access to date palm sap might prevent tari-associated NiV infection.

Concepts: Infection, Mammal, Primate, Bat, Henipavirus, Measles, Alcoholic beverage, Zoonosis

36

Zoonoses originating from wildlife represent a significant threat to global health, security and economic growth, and combatting their emergence is a public health priority. However, our understanding of the mechanisms underlying their emergence remains rudimentary. Here we update a global database of emerging infectious disease (EID) events, create a novel measure of reporting effort, and fit boosted regression tree models to analyze the demographic, environmental and biological correlates of their occurrence. After accounting for reporting effort, we show that zoonotic EID risk is elevated in forested tropical regions experiencing land-use changes and where wildlife biodiversity (mammal species richness) is high. We present a new global hotspot map of spatial variation in our zoonotic EID risk index, and partial dependence plots illustrating relationships between events and predictors. Our results may help to improve surveillance and long-term EID monitoring programs, and design field experiments to test underlying mechanisms of zoonotic disease emergence.

Concepts: Epidemiology, Infectious disease, Lyme disease, Swine influenza, Pandemic, Zoonosis

35

A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: ‘spillover’, i.e. transmission of pathogens from animals to humans, and ‘stuttering transmission’, i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir.

Concepts: Epidemiology, Disease, Infectious disease, Diseases and disorders, Influenza, Swine influenza, Pandemic, Zoonosis

33

Progress in combatting zoonoses that emerge from wildlife is often constrained by limited knowledge of the biology of pathogens within reservoir hosts. We focus on the host-pathogen dynamics of four emerging viruses associated with bats: Hendra, Nipah, Ebola, and Marburg viruses. Spillover of bat infections to humans and domestic animals often coincides with pulses of viral excretion within bat populations, but the mechanisms driving such pulses are unclear. Three hypotheses dominate current research on these emerging bat infections. First, pulses of viral excretion could reflect seasonal epidemic cycles driven by natural variations in population densities and contact rates among hosts. If lifelong immunity follows recovery, viruses may disappear locally but persist globally through migration; in either case, new outbreaks occur once births replenish the susceptible pool. Second, epidemic cycles could be the result of waning immunity within bats, allowing local circulation of viruses through oscillating herd immunity. Third, pulses could be generated by episodic shedding from persistently infected bats through a combination of physiological and ecological factors. The three scenarios can yield similar patterns in epidemiological surveys, but strategies to predict or manage spillover risk resulting from each scenario will be different. We outline an agenda for research on viruses emerging from bats that would allow for differentiation among the scenarios and inform development of evidence-based interventions to limit threats to human and animal health. These concepts and methods are applicable to a wide range of pathogens that affect humans, domestic animals, and wildlife.

Concepts: Epidemiology, Biology, Insect, Vaccination, Population, Population ecology, Zoonosis, Natural reservoir