SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Zebra Finch

261

Bright-red colors in vertebrates are commonly involved in sexual, social, and interspecific signaling [1-8] and are largely produced by ketocarotenoid pigments. In land birds, ketocarotenoids such as astaxanthin are usually metabolically derived via ketolation of dietary yellow carotenoids [9, 10]. However, the molecular basis of this gene-environment mechanism has remained obscure. Here we use the yellowbeak mutation in the zebra finch (Taeniopygia guttata) to investigate the genetic basis of red coloration. Wild-type ketocarotenoids were absent in the beak and tarsus of yellowbeak birds. The yellowbeak mutation mapped to chromosome 8, close to a cluster of cytochrome P450 loci (CYP2J2-like) that are candidates for carotenoid ketolases. The wild-type zebra finch genome was found to have three intact genes in this cluster: CYP2J19A, CYP2J19B, and CYP2J40. In yellowbeak, there are multiple mutations: loss of a complete CYP2J19 gene, a modified remaining CYP2J19 gene (CYP2J19(yb)), and a non-synonymous SNP in CYP2J40. In wild-type birds, CYP2J19 loci are expressed in ketocarotenoid-containing tissues: CYP2J19A only in the retina and CYP2J19B in the beak and tarsus and to a variable extent in the retina. In contrast, expression of CYP2J19(yb) is barely detectable in the beak of yellowbeak birds. CYP2J40 has broad tissue expression and shows no differences between wild-type and yellowbeak. Our results indicate that CYP2J19 genes are strong candidates for the carotenoid ketolase and imply that ketolation occurs in the integument in zebra finches. Since cytochrome P450 enzymes include key detoxification enzymes, our results raise the intriguing possibility that red coloration may be an honest signal of detoxification ability.

Concepts: DNA, Gene, Genetics, Gene expression, Evolution, Chromosome, Cytochrome P450, Zebra Finch

225

Research on mate choice has primarily focused on preferences for quality indicators, assuming that all individuals show consensus about who is the most attractive. However, in some species, mating preferences seem largely individual-specific, suggesting that they might target genetic or behavioral compatibility. Few studies have quantified the fitness consequences of allowing versus preventing such idiosyncratic mate choice. Here, we report on an experiment that controls for variation in overall partner quality and show that zebra finch (Taeniopygia guttata) pairs that resulted from free mate choice achieved a 37% higher reproductive success than pairs that were forced to mate. Cross-fostering of freshly laid eggs showed that embryo mortality (before hatching) primarily depended on the identity of the genetic parents, whereas offspring mortality during the rearing period depended on foster-parent identity. Therefore, preventing mate choice should lead to an increase in embryo mortality if mate choice targets genetic compatibility (for embryo viability), and to an increase in offspring mortality if mate choice targets behavioral compatibility (for better rearing). We found that pairs from both treatments showed equal rates of embryo mortality, but chosen pairs were better at raising offspring. These results thus support the behavioral, but not the genetic, compatibility hypothesis. Further exploratory analyses reveal several differences in behavior and fitness components between “free-choice” and “forced” pairs.

Concepts: Gene, Evolution, Taeniopygia, Zebra Finch, Motivation, Human behavior, Charles Darwin, Estrildid finch

188

BACKGROUND: Like human infants, songbirds learn their species-specific vocalizations through imitation learning. The birdsong system has emerged as a widely used experimental animal model for understanding the underlying neural mechanisms responsible for vocal production learning. However, how neural impulses are translated into precise motor behavior of the complex vocal organ (syrinx) to create song is poorly understood. First and foremost, we lack a detailed understanding of syringeal morphology. RESULTS: To fill this gap we combined non-invasive (high-field magnetic resonance imaging and micro-computed tomography) and invasive techniques (histology and micro-dissection) to construct the annotated high-resolution three-dimensional (3D) dataset, or morphome, of the zebra finch (Taeniopygia guttata) syrinx. We identified and annotated syringeal cartilage, bone, and musculature in situ in unprecedented detail. e provide interactive 3D models that greatly improve the communication of complex morphological data and of our understanding of syringeal function in general. CONCLUSIONS: Our results show that the syringeal skeleton is optimized for low weight driven by physiological constraints on song production. The present refinement of muscle organization and identity elucidates how apposed muscles actuate different syringeal elements. Our dataset allows for more precise predictions about muscle co-activation and synergies and has important implications for muscle activity and stimulation experiments. We also demonstrate how the syrinx can be stabilized during song to reduce mechanical noise and, as such, enhance repetitive execution of stereotypic motor patterns. In addition, we identify a cartilaginous structure suited to play a crucial role in the uncoupling of sound frequency and amplitude control, which permits a novel explanation to the evolutionary success of songbirds.

Concepts: Heart, Muscle, Magnetic resonance imaging, Taeniopygia, Zebra Finch, Sound, Connective tissue, Songbird

30

Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca’s area in the frontal lobe and Wernicke’s area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke’s area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

Concepts: Brain, Human brain, Cerebral cortex, Cerebrum, Wernicke's area, Language, Zebra Finch, Frontal lobe

20

Estradiol provision via neural aromatization decreases neuro-inflammation and -degeneration, but almost nothing is known about the interactions between the peripheral immune system and brain aromatase. Given the vulnerability of the CNS we reasoned that brain aromatization may protect circuits from the threats of peripheral infection; perhaps shielding cells that are less resilient from the degeneration associated with peripheral infection or trauma. Lipopolysaccharide (LPS) or vehicle was administered peripherally to adult zebra finches and sickness behavior was recorded 2 or 24 hours later. The central transcription of cytokines and aromatase was measured, as were telencephalic aromatase activity and immunoreactive aromatase (24 hour time point only). Two hours post LPS, sickness-like behaviors increased, the transcription of IL-1β was higher in both sexes, and TNFα was elevated in females. 24 hours post-LPS, the behavior of LPS birds was similar to controls, and cytokines had returned to baseline, but aromatase mRNA and activity were elevated in both sexes. Immunocytochemistry revealed greater numbers of aromatase-expressing neurons in LPS birds. These data suggest that the activation of the immune system via peripheral endotoxin increases neuronal aromatase; a mechanism that may rapidly generate a potent anti-neuroinflammatory steroid in response to peripheral activation of the immune system.

Concepts: Immune system, Nervous system, Antibody, Neuron, Immunology, Testosterone, Zebra Finch, 24-hour clock

19

Brain activity during sleep is fairly ubiquitous and the best studied possible function is a role in memory consolidation, including motor memory. One suggested mechanism of how neural activity effects these benefits is through reactivation of neurons in patterns resembling those of the preceding experience. The specific patterns of motor activation replayed during sleep are largely unknown for any system. Brain areas devoted to song production in the songbird brain exhibit spontaneous song-like activity during sleep, but single cell neural recordings did not permit detection of the specific song patterns. We have now discovered that this sleep activation can be detected in the muscles of the vocal organ, thus providing a unique window into song-related brain activity at night. We show that male zebra finches (Taeniopygia guttata) frequently exhibit spontaneous song-like activity during the night, but that the fictive song patterns are highly variable and uncoordinated compared to the highly stereotyped day-time song production. This substantial variability is not consistent with the idea that night-time activity replays day-time experiences for consolidation. Although the function of this frequent activation is unknown, it may represent a mechanism for exploring motor space or serve to generate internal error signals that help maintain the high stereotypy of day-time song. In any case, the described activity supports the emerging insight that brain activity during sleep may serve a variety of functions.

Concepts: Nervous system, Neuron, Brain, Sleep, Neuroscience, Memory, Taeniopygia, Zebra Finch

6

Inversion polymorphisms constitute an evolutionary puzzle: they should increase embryo mortality in heterokaryotypic individuals but still they are widespread in some taxa. Some insect species have evolved mechanisms to reduce the cost of embryo mortality but humans have not. In birds, a detailed analysis is missing although intraspecific inversion polymorphisms are regarded as common. In Australian zebra finches (Taeniopygia guttata), two polymorphic inversions are known cytogenetically and we set out to detect these two and potentially additional inversions using genomic tools and study their effects on embryo mortality and other fitness-related and morphological traits.

Concepts: Gene, Natural selection, Evolution, Species, Insect, Bird, Taeniopygia, Zebra Finch

6

Vocal signals such as calls play a crucial role for survival and successful reproduction, especially in group-living animals. However, call interactions and call dynamics within groups remain largely unexplored because their relation to relevant contexts or life-history stages could not be studied with individual-level resolution. Using on-bird microphone transmitters, we recorded the vocalisations of individual zebra finches (Taeniopygia guttata) behaving freely in social groups, while females and males previously unknown to each other passed through different stages of the breeding cycle. As birds formed pairs and shifted their reproductive status, their call repertoire composition changed. The recordings revealed that calls occurred non-randomly in fine-tuned vocal interactions and decreased within groups while pair-specific patterns emerged. Call-type combinations of vocal interactions changed within pairs and were associated with successful egg-laying, highlighting a potential fitness relevance of calling dynamics in communication systems.

Concepts: Human, Male, Reproduction, Female, Bird, Taeniopygia, Zebra Finch, Media technology

6

Human language, as well as birdsong, relies on the ability to arrange vocal elements in new sequences. However, little is known about the ontogenetic origin of this capacity. Here we track the development of vocal combinatorial capacity in three species of vocal learners, combining an experimental approach in zebra finches (Taeniopygia guttata) with an analysis of natural development of vocal transitions in Bengalese finches (Lonchura striata domestica) and pre-lingual human infants. We find a common, stepwise pattern of acquiring vocal transitions across species. In our first study, juvenile zebra finches were trained to perform one song and then the training target was altered, prompting the birds to swap syllable order, or insert a new syllable into a string. All birds solved these permutation tasks in a series of steps, gradually approximating the target sequence by acquiring new pairwise syllable transitions, sometimes too slowly to accomplish the task fully. Similarly, in the more complex songs of Bengalese finches, branching points and bidirectional transitions in song syntax were acquired in a stepwise fashion, starting from a more restrictive set of vocal transitions. The babbling of pre-lingual human infants showed a similar pattern: instead of a single developmental shift from reduplicated to variegated babbling (that is, from repetitive to diverse sequences), we observed multiple shifts, where each new syllable type slowly acquired a diversity of pairwise transitions, asynchronously over development. Collectively, these results point to a common generative process that is conserved across species, suggesting that the long-noted gap between perceptual versus motor combinatorial capabilities in human infants may arise partly from the challenges in constructing new pairwise vocal transitions.

Concepts: Species, Developmental biology, Sequence, Taeniopygia, Zebra Finch, Developmental psychology, Song, Finch

5

Juvenile songbirds learn vocal communication from adult tutors of the same species but not from adults of other species. How species-specific learning emerges from the basic features of song prosody remains unknown. In the zebra finch auditory cortex, we discovered a class of neurons that register the silent temporal gaps between song syllables and are distinct from neurons encoding syllable morphology. Behavioral learning and neuronal coding of temporal gap structure resisted song tutoring from other species: Zebra finches fostered by Bengalese finch parents learned Bengalese finch song morphology transposed onto zebra finch temporal gaps. During the vocal learning period, temporal gap neurons fired selectively to zebra finch song. The innate temporal coding of intersyllable silent gaps suggests a neuronal barcode for conspecific vocal learning and social communication in acoustically diverse environments.

Concepts: Psychology, Neuron, Brain, Species, Cerebral cortex, Zebra Finch, Learning, Finch