Discover the most talked about and latest scientific content & concepts.

Concept: Yuma, Arizona


With thousands of pesticides registered by the United States Environmental Protection Agency, it not feasible to sample for all pesticides applied in agricultural communities. Hazard-ranking pesticides based on use, toxicity, and exposure potential can help prioritize community-specific pesticide hazards. This study applied hazard-ranking schemes for cancer, endocrine disruption, and reproductive/developmental toxicity in Yuma County, Arizona. An existing cancer hazard-ranking scheme was modified, and novel schemes for endocrine disruption and reproductive/developmental toxicity were developed to rank pesticide hazards. The hazard-ranking schemes accounted for pesticide use, toxicity, and exposure potential based on chemical properties of each pesticide. Pesticides were ranked as hazards with respect to each health effect, as well as overall chronic health effects. The highest hazard-ranked pesticides for overall chronic health effects were maneb, metam-sodium, trifluralin, pronamide, and bifenthrin. The relative pesticide rankings were unique for each health effect. The highest hazard-ranked pesticides differed from those most heavily applied, as well as from those previously detected in Yuma homes over a decade ago. The most hazardous pesticides for cancer in Yuma County, Arizona were also different from a previous hazard-ranking applied in California. Hazard-ranking schemes that take into account pesticide use, toxicity, and exposure potential can help prioritize pesticides of greatest health risk in agricultural communities. This study is the first to provide pesticide hazard-rankings for endocrine disruption and reproductive/developmental toxicity based on use, toxicity, and exposure potential. These hazard-ranking schemes can be applied to other agricultural communities for prioritizing community-specific pesticide hazards to target decreasing health risk.

Concepts: Pesticide, United States Environmental Protection Agency, Ranking, DDT, Arizona, Health effector, Yuma, Arizona, Yuma County, Arizona


Dengue is an acute febrile illness caused by any of four dengue virus types (DENV-1-4). DENVs are transmitted by mosquitos of the genus Aedes (1) and are endemic throughout the tropics (2). In 2010, an estimated 390 million DENV infections occurred worldwide (2). During 2007-2013, a total of three to 10 dengue cases were reported annually in Arizona and all were travel-associated. During September-December 2014, coincident with a dengue outbreak in Sonora, Mexico, 93 travel-associated dengue cases were reported in Arizona residents; 70 (75%) cases were among residents of Yuma County, which borders San Luis Río Colorado, Sonora, Mexico. San Luis Río Colorado reported its first case of locally acquired dengue in September 2014. To investigate the temporal relationship of the dengue outbreaks in Yuma County and San Luis Río Colorado and compare patient characteristics and signs and symptoms, passive surveillance data from both locations were analyzed. In addition, household-based cluster investigations were conducted near the residences of reported dengue cases in Yuma County to identify unreported cases and assess risk for local transmission. Surveillance data identified 52 locally acquired cases (21% hospitalized) in San Luis Río Colorado and 70 travel-associated cases (66% hospitalized) in Yuma County with illness onset during September-December 2014. Among 194 persons who participated in the cluster investigations in Yuma County, 152 (78%) traveled to Mexico at least monthly during the preceding 3 months. Four (2%) of 161 Yuma County residents who provided serum samples for diagnostic testing during cluster investigations had detectable DENV immunoglobulin M (IgM); one reported a recent febrile illness, and all four had traveled to Mexico during the preceding 3 months. Entomologic assessments among 105 households revealed 24 water containers per 100 houses colonized by Ae. aegypti. Frequent travel to Mexico and Ae. aegypti colonization indicate risk for local transmission of DENV in Yuma County. Public health officials in Sonora and Arizona should continue to collaborate on dengue surveillance and educate the public regarding mosquito abatement and avoidance practices. Clinicians evaluating patients from the U.S.-Mexico border region should consider dengue in patients with acute febrile illness and report suspected cases to public health authorities.

Concepts: Mosquito, Aedes aegypti, Aedes, Dengue fever, Dengue, Arizona, Colorado, Yuma, Arizona


Acoustic sensors are being employed on airborne platforms for source localization. Under certain atmospheric conditions, airborne sensors offer a distinct advantage over ground sensors. Among other factors, the performance of airborne sensors is affected by refraction of sound signals due to vertical gradients in temperature and wind velocity. A comprehensive experiment in source localization with an aerostat-mounted acoustic system was carried out in July 2010 at Yuma Proving Ground (YPG). Acoustic sources on the ground consisted of one-pound TNT denotations and small arms firings. The height of the aerostat was approximately 1 km above the ground. In this paper, horizontal, azimuthal, and elevation errors in source localization and their statistics are studied in detail. Initially, straight-line propagation is assumed; then refraction corrections are introduced to improve source localization and decrease the errors. The corrections are based on a recently developed theory [Ostashev et al., J. Acoust. Soc. Am. (2008)] that accounts for sound refraction due to vertical profiles of temperature and wind velocity. During the 2010 YPG field test, the vertical profiles were measured only up to a height of approximately 100 m. Therefore, the European Center for Medium-range Weather Forecasts (ECMWF) is used to generate the profiles for July of 2010.

Concepts: Kilometre, Test method, Wind, Celestial coordinate system, Yuma, Arizona, Proving ground, Yuma Proving Ground, European Centre for Medium-Range Weather Forecasts


Polybrominated diphenyl ethers (PBDEs) were determined in fish collected from the Gila River, Arizona, a tributary of the Colorado River in the lower part of the Colorado River Basin. Fish samples were collected at sites on the Gila River downstream from Hayden, Phoenix, and Arlington, Arizona in late summer 2003. The Gila River is ephemeral upstream of the Phoenix urban area due to dams and irrigation projects and has limited perennial flow downstream of Phoenix due to wastewater and irrigation return flows. Fifty PBDE congeners were analyzed by high resolution gas chromatography/high resolution mass spectrometry using labeled surrogate standards in composite samples of male and female common carp (Cyrpinus carpio), largemouth bass (Micropterus salmoides) and channel catfish (Ictalurus punctatus). The predominant PBDE congeners detected and quantified were 47, 100, 153, 49, 28, and 17. Concentrations of total PBDEs in these fish ranged from 1.4 to 12700ngg(-1) wet weight, which are some of the highest concentrations reported in fish from the United States. Differences in metabolism of several PBDE congeners by carp is clear at the Phoenix site; congeners with at least one ring of 2,4,5-substitution are preferentially metabolized as are congeners with 2,3,4-substitution.

Concepts: Polybrominated diphenyl ethers, Largemouth bass, Arizona, Catfish, Fish of the United States, Channel catfish, Colorado River, Yuma, Arizona