Discover the most talked about and latest scientific content & concepts.

Concept: Yield surface


A strategy to halt dissolution of particle-coated air bubbles in water based on interfacial rheology design is presented. Whereas previously a dense monolayer was believed to be required for such an “armored bubble” to resist dissolution, in fact engineering a 2D yield stress interface suffices to achieve such performance at submonolayer particle coverages. We use a suite of interfacial rheology techniques to characterize spherical and ellipsoidal particles at an air-water interface as a function of surface coverage. Bubbles with varying particle coverages are made and their resistance to dissolution evaluated using a microfluidic technique. Whereas a bare bubble only has a single pressure at which a given radius is stable, we find a range of pressures over which bubble dissolution is arrested for armored bubbles. The link between interfacial rheology and macroscopic dissolution of [Formula: see text] 100 [Formula: see text]m bubbles coated with [Formula: see text] 1 [Formula: see text]m particles is presented and discussed. The generic design rationale is confirmed by using nonspherical particles, which develop significant yield stress at even lower surface coverages. Hence, it can be applied to successfully inhibit Ostwald ripening in a multitude of foam and emulsion applications.

Concepts: Volume, Physical chemistry, Design, Elasticity, Linear elasticity, Yield surface


Abstract Objective. This study evaluated the influence of framework material and vertical misfit on stress created in an implant-supported partial prosthesis under load application. Materials and methods. The posterior part of a severely reabsorbed jaw with a fixed partial prosthesis above two osseointegrated titanium implants at the place of the second premolar and second molar was modeled using SolidWorks 2010 software. Finite element models were obtained by importing the solid model into an ANSYS Workbench 11 simulation. The models were divided into 15 groups according to their prosthetic framework material (type IV gold alloy, silver-palladium alloy, commercially pure titanium, cobalt-chromium alloy or zirconia) and vertical misfit level (10 µm, 50 µm and 100 µm). After settlement of the prosthesis with the closure of the misfit, simultaneous loads of 110 N vertical and 15 N horizontal were applied on the occlusal and lingual faces of each tooth, respectively. The data was evaluated using Maximum Principal Stress (framework, porcelain veneer and bone tissue) and a von Mises Stress (retention screw) provided by the software. Results. As a result, stiffer frameworks presented higher stress concentrations; however, these frameworks led to lower stresses in the porcelain veneer, the retention screw (faced to 10 µm and 50 µm of the misfit) and the peri-implant bone tissues. Conclusion. The increase in the vertical misfit resulted in stress values increasing in all of the prosthetic structures and peri-implant bone tissues. The framework material and vertical misfit level presented a relevant influence on the stresses for all of the structures evaluated.

Concepts: Bone, Finite element method, Materials science, Osseous tissue, Partial differential equation, Finite element method in structural mechanics, Canine tooth, Yield surface


We report the development of a stress-responsive colorimetric film that can memorize the stress it has experienced. The system is designed by taking advantage of the plasmonic shift associated with the disassembly of one-dimensional gold nanoparticle chains driven by the plastic deformation of the surrounding polymer matrix. By modifying the plasticity of the polymer, we demonstrate that the plasmonic shift and colorimetric change respond to a large range of stresses. This novel pressure indicating film can be used to capture and record the pressure distribution and magnitude between two contacting or impacting surfaces by outputting color information.

Concepts: Nanoparticle, Polymer, Vector space, Gold, Elasticity, Solid mechanics, Yield surface, Plasticity


Selection for divergent performance optima has been proposed as a central mechanism underlying adaptive radiation. Uncovering multiple optima requires identifying forms associated with different adaptive zones and linking those forms to performance. However, testing and modeling the performance of complex morphologies like the cranium is challenging. We introduce a three-dimensional finite element (FE) model of the cranium that can be morphed into different shapes by varying simple parameters to investigate the relationship between two engineering-based measures of performance, mechanical advantage and von Mises stress, and four divergent adaptive zones occupied by New World leaf-nosed bats. To investigate these relationships,we tested the fit of Brownian motion and Ornstein-Uhlenbeck models of evolution in mechanical advantage and von Mises stress using dated multi-locus phylogenies. The analyses revealed three performance optima for mechanical advantage among species from three adaptive zones: bats that eat nectar; generalized insectivores omnivores and some frugivores; and bats that specialize on hard canopy fruits. Only two optima, one corresponding to nectar feeding, were consistently uncovered for von Mises stress. These results suggest that mechanical advantage played a larger role than von Mises stress in the radiation of New World leaf-nosed bats into divergent adaptive zones. This article is protected by copyright. All rights reserved.

Concepts: Evolution, Eating, Model, Materials science, All rights reserved, Copyright, Yield surface, Leaf-nosed bat


Understanding and controlling the glass transition temperature (Tg) and dynamics of polymers in confined geometries are of significance in both academia and industry. Here, we investigate how the thermal stress induced by a mismatch in the coefficient of thermal expansion affects the Tg behavior of polystyrene (PS) nanorods located inside cylindrical alumina nanopores. The size effects and molecular weight dependence of the Tg are also studied. A multi-step relaxation process was employed to study the relationship between thermal stress and cooling rate. At fast cooling rates, the imparted thermal stress would overcome the yield stress of PS and peel chains off the pore walls, while at slow cooling rates, chains are kept in contact with the pore walls due to timely dissipation of the produced thermal stress during vitrification. In smaller nanopores, more PS chains closely contact with pore walls, then stronger internal thermal stress would be generated between core and shell of PS nanorod, which results in a larger deviation between two Tgs. The core part of PS shows lower Tg than bulk value, which can induce faster dynamics in the center region. A complex and important role stress plays is supposed in complex confinement condition, e.g., in nanopores, during vitrification.

Concepts: Temperature, Force, Differential scanning calorimetry, Glass, Glass transition, Elasticity, Linear elasticity, Yield surface


The exceptional mechanical flexibility observed with certain organic crystals defies the common perception of single crystals as brittle objects. Here, we describe the morphostructural consequences of plastic deformation in crystals of hexachlorobenzene that can be bent mechanically at multiple locations to 360° with retention of macroscopic integrity. This extraordinary plasticity proceeds by segregation of the bent section into flexible layers that slide on top of each other, thereby generating domains with slightly different lattice orientations. Microscopic, spectroscopic and diffraction analyses of the bent crystal showed that the preservation of crystal integrity when stress is applied on the (001) face requires sliding of layers by breaking and re-formation of halogen-halogen interactions. Application of stress on the (100) face, in the direction where π···π interactions dominate the packing, leads to immediate crystal disintegration. Within a broader perspective, this study highlights the yet unrecognized extraordinary malleability of molecular crystals with strongly anisotropic supramolecular interactions.

Concepts: Crystal, Chemistry, Elasticity, Solid mechanics, Yield surface, Plasticity, Crystals, Molecular crystal


A model of internally-structured emulsion droplets is presented that accounts for the traction forces generated by interfacial tension and the von Mises yield criterion of the internal supporting network. For symmetric droplets, the method calculates the total stress acting on a droplet locally, allowing droplet stability and location of failure to be predicted. It is not regions of high interfacial curvature that prompt droplet reconfiguration, rather regions transitioning from high to low curvature. The model enables the design of emulsion droplet response and reconfigurability to external triggers such as changes in surface tension (surfactant concentration) and temperature.

Concepts: Force, Liquid, Surface tension, Emulsion, Drop, Surfactant, Yield, Yield surface


The poly(4-methyl-1-pentene) sample was used to investigate the cavitation induced stress-whitening phenomenon during stretching at different temperatures via the ultra-small-angle X-ray scattering technique. Two modes of cavitation were found that mode I cavitation activated around yield point followed by mode II cavitation generated in highly oriented state. The critical strain for initiating the mode II cavitation increases with the increase of stretching temperature whereas the critical stress grew steadily in the lower temperature regime (30~60oC) and reached a plateau at 70oC. The appearance of mode II cavitation at large strains was independent on the mode I cavitation. The mode I cavitation was attributed to the competitive process between the formation of cavities and shearing yield of lamellae while the mode II cavitation was proven to be related to the failure of the whole highly oriented entangled amorphous network due to the breaking of interfibrillar load bearing tie molecules. Size distribution of cavities has been successfully calculated using a model fitting procedure. The results showed that the quantity of cavities increased heavily while the size kept nearly constant during the propagation of the mode II cavitation.

Concepts: Mode, Temperature, Tensile strength, Elasticity, Solid mechanics, Linear elasticity, Yield surface, Deformation


ZrCu-based bulk metallic glass composites (BMGCs) are well known for their plastic deformability, superior to traditional metallic glasses (MGs), which is attributed to a unique dual-phases structure, namely, the glassy matrix and unstable B2 phase. In the present study, in-situ tensile testing is used to trace the deformation process of a ZrCu-based BMGC. Three deformation stages of the BMGC, i.e., the elastic-elastic stage, the elastic-plastic stage, and the plastic-plastic stage are identified. In the elastic-elastic and elastic-plastic stages, the yield strength and elastic limit are major influenced by the volume fraction of the B2 crystals. In the plastic-plastic stage, the B2 phase stimulates the formation of multiple shear bands and deflects the direction of shear bands by disturbing the stress field in front of the crack tip. The deformation-induced martensitic transformation of the metastable B2 phase contributes to the plasticity and work hardening of the composite. This study highlights the formation and propagation of multiple shear bands and reveals the interactions of shear bands with structural heterogeneities in situ. Especially, the blocking of shear bands by crystals and the martensitic transformation of the B2 phase are critical for the mechanistic deformation process and illustrate the function of the B2 phase in the present BMGCs.

Concepts: Metal, Tensile strength, Glass, Elasticity, Yield, Solid mechanics, Yield surface, Plasticity


Previously, we reported the effect of rearing conditions (plastic floors and air quality) on carcass injury development of broiler chickens at thermal comfort. In this study, the same rearing conditions were tested at thermal stress. The birds were reared in 2 climatic chambers, and the experiment followed a completely randomized design with one factor, flooring material: wood shaving or perforated plastic. The birds were divided into 16 experimental pens, being 8 females and 8 males. The studied parameters were the same as the previous study (ammonia concentration, carbon dioxide, performance, carcass yield, and variability, and scores of hygiene, gait and chest, and hocks and footpad lesions). Higher ammonia (15 ppm vs. 4 ppm) and carbon dioxide (1,000 ppm vs. 850 ppm) concentration was seen at d 42 for the wood shavings floor as compared to the perforated plastic floor, respectively. Regarding gender, males had better performance than females at 42 d of age on both floor types. Males reared on wood shavings showed a higher meat production (29.049 kg/m2) than females (24.700 kg/m2). There were observed breast lesion incidences of 10.4% (score 1) in males reared on the plastic floor, as well higher incidence of hock injury and footpad dermatitis. Chickens reared on plastic flooring showed better hygiene than chickens reared on wood shavings. Our findings revealed that the use of perforated plastic flooring in a heat stress situation can improve the air quality (less CO2 and NH3 concentration) and bird cleanliness. On the other hand, chickens are more susceptible to develop lesions in the breast, hock, and footpad. We conclude that the use of plastic flooring in heat stress conditions needs more attention, since chickens are more susceptible to develop lesions on the carcass, being a source of pain, impairing bird wellbeing and causing losses in meat production.

Concepts: Oxygen, Carbon dioxide, Bird, Carbon, Meat, Yield surface, Floor, Flooring