Discover the most talked about and latest scientific content & concepts.

Concept: Yellowstone National Park


The economic and ecological costs of wildfire in the United States have risen substantially in recent decades. Although climate change has likely enabled a portion of the increase in wildfire activity, the direct role of people in increasing wildfire activity has been largely overlooked. We evaluate over 1.5 million government records of wildfires that had to be extinguished or managed by state or federal agencies from 1992 to 2012, and examined geographic and seasonal extents of human-ignited wildfires relative to lightning-ignited wildfires. Humans have vastly expanded the spatial and seasonal “fire niche” in the coterminous United States, accounting for 84% of all wildfires and 44% of total area burned. During the 21-y time period, the human-caused fire season was three times longer than the lightning-caused fire season and added an average of 40,000 wildfires per year across the United States. Human-started wildfires disproportionally occurred where fuel moisture was higher than lightning-started fires, thereby helping expand the geographic and seasonal niche of wildfire. Human-started wildfires were dominant (>80% of ignitions) in over 5.1 million km(2), the vast majority of the United States, whereas lightning-started fires were dominant in only 0.7 million km(2), primarily in sparsely populated areas of the mountainous western United States. Ignitions caused by human activities are a substantial driver of overall fire risk to ecosystems and economies. Actions to raise awareness and increase management in regions prone to human-started wildfires should be a focus of United States policy to reduce fire risk and associated hazards.

Concepts: Earth, United States, Climate, Poverty in the United States, U.S. state, Native Americans in the United States, Economy of the United States, Yellowstone National Park


Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone - discrepancy between expected and realized mortality levels - led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty.

Concepts: Hunting, British Columbia, Bear, Montana, Yellowstone National Park, Bears, Grizzly Bear, Banff National Park


The effect of anthropogenic noise on terrestrial wildlife is a relatively new area of study with broad ranging management implications. Noise has been identified as a disturbance that has the potential to induce behavioral responses in animals similar to those associated with predation risk. This study investigated potential impacts of a variety of human activities and their associated noise on the behavior of elk (Cervus elaphus) and pronghorn (Antilocapra americana) along a transportation corridor in Grand Teton National Park.

Concepts: Pronghorn, Deer, Human behavior, Elk, Yellowstone National Park, Megafauna of North America, Teton County, Wyoming, Grand Teton National Park


Since 1980, bison have injured more pedestrian visitors to Yellowstone National Park (Yellowstone) than any other animal (1). After the occurrence of 33 bison-related injuries during 1983-1985 (range = 10-13/year), the park implemented successful outreach campaigns (1) to reduce the average number of injuries to 0.8/year (range = 0-2/year) during 2010-2014 (unpublished data, National Park Service, September 2015). During May-July 2015, five injuries associated with bison encounters occurred (Table). Case reports were reviewed to evaluate circumstances surrounding these injuries to inform prevention.

Concepts: United States, American Bison, Yellowstone National Park, National Park Service, National park, Fort Yellowstone, Mission 66, Harry Yount


Tracking and preventing the spillover of disease from wildlife to livestock can be difficult when rare outbreaks occur across large landscapes. In these cases, broad scale ecological studies could help identify risk factors and patterns of risk to inform management and reduce incidence of disease. Between 2002 and 2014, 21 livestock herds in the Greater Yellowstone Area (GYA) were affected by brucellosis, a bacterial disease caused by Brucella abortus, while no affected herds were detected between 1990 and 2001. Using a Bayesian analysis, we examined several ecological covariates that may be associated with affected livestock herds across the region. We showed that livestock risk has been increasing over time and expanding outward from the historical nexus of brucellosis in wild elk on Wyoming’s feeding grounds where elk are supplementally fed during the winter. Although elk were the presumed source of cattle infections, occurrences of affected livestock herds were only weakly associated with the density of seropositive elk across the GYA. However, the shift in livestock risk did coincide with recent increases in brucellosis seroprevalence in unfed elk populations. As increasing brucellosis in unfed elk likely stemmed from high levels of the disease in fed elk, disease-related costs of feeding elk have probably been incurred across the entire GYA, rather than solely around the feeding grounds. Our results suggest that focused disease mitigation in areas where seroprevalence in unfed elk is high could reduce the spillover of brucellosis to livestock. We also highlight the need to better understand the epidemiology of spillover events with detailed histories of disease testing, calving, and movement of infected livestock. Finally, we recommend using case-control studies to investigate local factors important to livestock risk.

Concepts: Epidemiology, Infectious disease, Infection, Cattle, Brucellosis, Elk, Brucella, Yellowstone National Park


Birds in U.S. national parks find strong protection from many longstanding and pervasive threats, but remain highly exposed to effects of ongoing climate change. To understand how climate change is likely to alter bird communities in parks, we used species distribution models relating North American Breeding Bird Survey (summer) and Audubon Christmas Bird Count (winter) observations to climate data from the early 2000s and projected to 2041-2070 (hereafter, mid-century) under high and low greenhouse gas concentration trajectories, RCP8.5 and RCP2.6. We analyzed climate suitability projections over time for 513 species across 274 national parks, classifying them as improving, worsening, stable, potential colonization, and potential extirpation. U.S. national parks are projected to become increasingly important for birds in the coming decades as potential colonizations exceed extirpations in 62-100% of parks, with an average ratio of potential colonizations to extirpations of 4.1 in winter and 1.4 in summer under RCP8.5. Average species turnover is 23% in both summer and winter under RCP8.5. Species turnover (Bray-Curtis) and potential colonization and extirpation rates are positively correlated with latitude in the contiguous 48 states. Parks in the Midwest and Northeast are expected to see particularly high rates of change. All patterns are more extreme under RCP8.5 than under RCP2.6. Based on the ratio of potential colonization and extirpation, parks were classified into overall trend groups associated with specific climate-informed conservation strategies. Substantial change to bird and ecological communities is anticipated in coming decades, and current thinking suggests managing towards a forward-looking concept of ecological integrity that accepts change and novel ecological conditions, rather than focusing management goals exclusively on maintaining or restoring a static set of historical conditions.

Concepts: Ecology, Yellowstone National Park, National Park Service, National park, Ohio and Erie Canal, Indiana Dunes National Lakeshore, Yosemite National Park


Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE). In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values) measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10%) and other plant foods (56±10%) were more important than meat (9±8%) to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout), as such information could be useful in predicting how the population will adapt to future environmental change.

Concepts: Ecosystem, Bear, Montana, Yellowstone National Park, Brown Bear, Bears, Greater Yellowstone Ecosystem, Grizzly Bear


Whole-genome sequencing has provided fundamental insights into infectious disease epidemiology, but has rarely been used for examining transmission dynamics of a bacterial pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis have increased in cattle along with rising seroprevalence in elk. Here we use a genomic approach to examine Brucella abortus evolution, cross-species transmission and spatial spread in the GYE. We find that brucellosis was introduced into wildlife in this region at least five times. The diffusion rate varies among Brucella lineages (∼3 to 8 km per year) and over time. We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir and the source of livestock infections, and that control measures in bison are unlikely to affect the dynamics of unrelated strains circulating in nearby elk populations.

Concepts: Epidemiology, Infectious disease, Bacteria, Infection, Brucellosis, Elk, Yellowstone National Park, Greater Yellowstone Ecosystem


We explored multiple linkages among grey wolves (Canis lupus), elk (Cervus elaphus), berry-producing shrubs and grizzly bears (Ursus arctos) in Yellowstone National Park. We hypothesized competition between elk and grizzly bears whereby, in the absence of wolves, increases in elk numbers would increase browsing on berry-producing shrubs and decrease fruit availability to grizzly bears. After wolves were reintroduced and with a reduced elk population, we hypothesized there would be an increase in the establishment of berry-producing shrubs, such as serviceberry (Amelanchier alnifolia), which is a major berry-producing plant. We also hypothesized that the percentage fruit in the grizzly bear diet would be greater after than before wolf reintroduction. We compared the frequency of fruit in grizzly bear scats to elk densities prior to wolf reintroduction during a time of increasing elk densities (1968-1987). For a period after wolf reintroduction, we calculated the percentage fruit in grizzly bear scat by month based on scats collected in 2007-2009 (n = 778 scats) and compared these results to scat data collected before wolf reintroduction. Additionally, we developed an age structure for serviceberry showing the origination year of stems in a northern range study area. We found that over a 19-year period, the percentage frequency of fruit in the grizzly diet (6231 scats) was inversely correlated (P < 0·001) with elk population size. The average percentage fruit in grizzly bear scats was higher after wolf reintroduction in July (0·3% vs. 5·9%) and August (7·8% vs. 14·6%) than before. All measured serviceberry stems accessible to ungulates originated since wolf reintroduction, while protected serviceberry growing in a nearby ungulate exclosure originated both before and after wolf reintroduction. Moreover, in recent years, browsing of serviceberry outside of the exclosure decreased while their heights increased. Overall, these results are consistent with a trophic cascade involving increased predation by wolves and other large carnivores on elk, a reduced and redistributed elk population, decreased herbivory and increased production of plant-based foods that may aid threatened grizzly bears.

Concepts: Elk, Coyote, Bear, Montana, Yellowstone National Park, Brown Bear, Bears, Grizzly Bear


The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km2; 33% growth), making it the fastest-growing land use type in the conterminous United States. The vast majority of new WUI areas were the result of new housing (97%), not related to an increase in wildland vegetation. Within the perimeter of recent wildfires (1990-2015), there were 286,000 houses in 2010, compared with 177,000 in 1990. Furthermore, WUI growth often results in more wildfire ignitions, putting more lives and houses at risk. Wildfire problems will not abate if recent housing growth trends continue.

Concepts: United States, Poverty in the United States, Vegetation, New York City, Yellowstone National Park, Wilderness, Wildfire, Wildland-urban interface