Discover the most talked about and latest scientific content & concepts.

Concept: XY sex-determination system


Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes-including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447-806 kya). This is ∼2.1 (95% CI: 1.7-2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups.

Concepts: Human, Evolution, Chromosome, Hominidae, Chimpanzee, Neanderthal, Human evolution, XY sex-determination system


BACKGROUND: Tilapia is the common name for a group of cichlid fishes and is one of the most important aquacultured freshwater food fish. Mozambique tilapia and its hybrids, including red tilapia are main representatives of salt tolerant tilapias. A linkage map is an essential framework for mapping QTL for important traits, positional cloning of genes and understanding of genome evolution. RESULTS: We constructed a consensus linkage map of Mozambique tilapia and red tilapia using 95 individuals from two F1 families and 401 microsatellites including 282 EST-derived markers. In addition, we conducted comparative mapping and searched for sex-determining loci on the whole genome. These 401 microsatellites were assigned to 22 linkage groups. The map spanned 1067.6 cM with an average inter-marker distance of 3.3 cM. Comparative mapping between tilapia and stickleback, medaka, pufferfish and zebrafish revealed clear homologous relationships between chromosomes from different species. We found evidence for the fusion of two sets of two independent chromosomes forming two new chromosome pairs, leading to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex determination locus in Mozambique tilapia was mapped on LG1, and verified in five families containing 549 individuals. The major XY sex determination locus in red tilapia was located on LG22, and verified in two families containing 275 individuals. CONCLUSIONS: A first-generation linkage map of salt tolerance tilapias was constructed using 401 microsatellites. Two separate fusions of two sets of two independent chromosomes may lead to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex-determining loci from Mozambique tilapia and red tilapia were mapped on LG1 and LG22, respectively. This map provides a useful resource for QTL mapping for important traits and comparative genome studies. The DNA markers linked to the sex-determining loci could be used in the selection of YY males for breeding all-male populations of salt tolerant tilapia, as well as in studies on mechanisms of sex determination in fish.

Concepts: Gene, Genetics, Human, Chromosome, Cichlid, Fish, Y chromosome, XY sex-determination system


Sex chromosomes are an ideal system to study processes connected with suppressed recombination. We found evidence of microsatellite expansion, on the relatively young Y chromosome of the dioecious plant sorrel (Rumex acetosa, XY1Y2 system), but no such expansion on the more ancient Y chromosomes of liverwort (Marchantia polymorpha) and human. The most expanding motifs were AC and AAC, which also showed periodicity of array length, indicating the importance of beginnings and ends of arrays. Our data indicate that abundance of microsatellites in genomes depends on the inherent expansion potential of specific motifs, which could be related to their stability and ability to adopt unusual DNA conformations. We also found that the abundance of microsatellites is higher in the neighborhood of transposable elements (TEs) suggesting that microsatellites are probably targets for TE insertions. This evidence suggests that microsatellite expansion is an early event shaping the Y chromosome where this process is not opposed by recombination, while accumulation of TEs and chromosome shrinkage predominate later.

Concepts: DNA, Gene, Bacteria, Evolution, Chromosome, Genetic genealogy, Y chromosome, XY sex-determination system


The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species.

Concepts: DNA, Gene, Genetics, Human, Species, Chromosome, Y chromosome, XY sex-determination system


Australia was one of the earliest regions outside Africa to be colonized by fully modern humans, with archaeological evidence for human presence by 47,000 years ago (47 kya) widely accepted [1, 2]. However, the extent of subsequent human entry before the European colonial age is less clear. The dingo reached Australia about 4 kya, indirectly implying human contact, which some have linked to changes in language and stone tool technology to suggest substantial cultural changes at the same time [3]. Genetic data of two kinds have been proposed to support gene flow from the Indian subcontinent to Australia at this time, as well: first, signs of South Asian admixture in Aboriginal Australian genomes have been reported on the basis of genome-wide SNP data [4]; and second, a Y chromosome lineage designated haplogroup C(∗), present in both India and Australia, was estimated to have a most recent common ancestor around 5 kya and to have entered Australia from India [5]. Here, we sequence 13 Aboriginal Australian Y chromosomes to re-investigate their divergence times from Y chromosomes in other continents, including a comparison of Aboriginal Australian and South Asian haplogroup C chromosomes. We find divergence times dating back to ∼50 kya, thus excluding the Y chromosome as providing evidence for recent gene flow from India into Australia.

Concepts: DNA, Gene, Cell, Human, Chromosome, Indian subcontinent, Indian Ocean, XY sex-determination system


We report the discovery of an African American Y chromosome that carries the ancestral state of all SNPs that defined the basal portion of the Y chromosome phylogenetic tree. We sequenced ∼240 kb of this chromosome to identify private, derived mutations on this lineage, which we named A00. We then estimated the time to the most recent common ancestor (TMRCA) for the Y tree as 338 thousand years ago (kya) (95% confidence interval = 237-581 kya). Remarkably, this exceeds current estimates of the mtDNA TMRCA, as well as those of the age of the oldest anatomically modern human fossils. The extremely ancient age combined with the rarity of the A00 lineage, which we also find at very low frequency in central Africa, point to the importance of considering more complex models for the origin of Y chromosome diversity. These models include ancient population structure and the possibility of archaic introgression of Y chromosomes into anatomically modern humans. The A00 lineage was discovered in a large database of consumer samples of African Americans and has not been identified in traditional hunter-gatherer populations from sub-Saharan Africa. This underscores how the stochastic nature of the genealogical process can affect inference from a single locus and warrants caution during the interpretation of the geographic location of divergent branches of the Y chromosome phylogenetic tree for the elucidation of human origins.

Concepts: Human, Evolution, Africa, Species, Chromosome, Human evolution, Archaic Homo sapiens, XY sex-determination system


Unlike the autosomes, recombination between the X chromosome and Y chromosome is often thought to be constrained to two small pseudoautosomal regions (PARs) at the tips of each sex chromosome. The PAR1 spans the first 2.7 Mb of the proximal arm of the human sex chromosomes, while the much smaller PAR2 encompasses the distal 320 kb of the long arm of each sex chromosome. In addition to the PAR1 and PAR2, there is a human-specific X-transposed region that was duplicated from the X to the Y. The X-transposed region is often not excluded from X-specific analyses, unlike the PARs, because it is not thought to routinely recombine. Genetic diversity is expected to be higher in recombining regions than in non-recombining regions because recombination reduces the effect of linked selection. In this study, we investigate patterns of genetic diversity in noncoding regions across the entire X chromosome of a global sample of 26 unrelated genetic females. We observe that genetic diversity in the PAR1 is significantly greater than the non-recombining regions (nonPARs). However, rather than an abrupt drop in diversity at the pseudoautosomal boundary, there is a gradual reduction in diversity from the recombining through the non-recombining region, suggesting that recombination between the human sex chromosomes spans across the currently defined pseudoautosomal boundary. A consequence of recombination spanning this boundary potentially includes increasing the rate of sex-linked disorders (e.g., de la Chapelle) and sex chromosome aneuploidies. In contrast, diversity in the PAR2 is not significantly elevated compared to the nonPAR, suggesting that recombination is not obligatory in the PAR2. Finally, diversity in the X-transposed region is higher than the surrounding nonPAR regions, providing evidence that recombination may occur with some frequency between the X and Y in the XTR.

Concepts: DNA, Human, Male, Chromosome, Y chromosome, Sex-determination system, X chromosome, XY sex-determination system


During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the “Barr body.” Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called “superdomains,” such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called “superloops.” DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.

Concepts: DNA, Gene, Cell nucleus, Chromosome, X chromosome, X-inactivation, XY sex-determination system, Barr body


The vast majority of the mouse and human genomes consist of repetitive elements (REs), while protein-coding sequences occupy only ∼3 %. It has been reported that the Y chromosomes of both species are highly populated with REs although at present, their complete sequences are not available in any public database. The recent update of the mouse genome database (Build 38.1) from the National Center for Biotechnology Information (NCBI) indicates that mouse chromosome Y is ∼92 Mb in size, which is substantially larger than the ∼16 Mb reported previously (Build 37.2). In this study, we examined how REs are arranged in mouse chromosome Y (Build 38.1) using REMiner-II, a RE mining program. A combination of diverse REs and RE arrays formed large clusters (up to ∼28 Mb in size) and most of them were directly or inversely related. Interestingly, the RE population of human chromosome Y (NCBI Build 37.2-current) was less dense, and the RE/RE array clusters were not evident in comparison to mouse chromosome Y. The annotated gene loci were distributed in five different regions and most of them were surrounded by unique RE arrays. In particular, tandem RE arrays were embedded into the introns of two adjacent gene loci. The findings from this study indicate that the large and interrelated clusters of REs and RE arrays predominantly represent the unique organizational pattern of mouse chromosome Y. The potential interactions among the clusters, which are populated with various interrelated REs and RE arrays, may play a role in the structural configuration and function of mouse chromosome Y.

Concepts: DNA, Gene, Human genome, Genome, Chromosome, Chromosomes, Y chromosome, XY sex-determination system


Sites and amounts of 5-methylcytosine (5-MeC)-rich chromosome regions were detected in the karyotypes of 9 Brazilian species of Characiformes fishes by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. These species, belonging to the genera Leporinus, Triportheus and Hoplias, are characterized by highly differentiated and heteromorphic ZW and XY sex chromosomes. In all species, the hypermethylated regions are confined to constitutive heterochromatin. The number and chromosome locations of hypermethylated heterochromatic regions in the karyotypes are constant and species-specific. Generally, heterochromatic regions that are darkly stained by the C-banding technique are distinctly hypermethylated, but several of the brightly fluorescing hypermethylated regions merely exhibit moderate or faint C-banding. The ZW and XY sex chromosomes of all 9 analyzed species also show species-specific heterochromatin hypermethylation patterns. The analysis of 5-MeC-rich chromosome regions contributes valuable data for comparative cytogenetics of closely related species and highlights the dynamic process of differentiation operating in the repetitive DNA fraction of sex chromosomes.

Concepts: DNA, Cell nucleus, Eukaryote, Species, Chromosome, Cytogenetics, Y chromosome, XY sex-determination system