SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: X-ray

388

Background The presence of a cardiovascular implantable electronic device has long been a contraindication for the performance of magnetic resonance imaging (MRI). We established a prospective registry to determine the risks associated with MRI at a magnetic field strength of 1.5 tesla for patients who had a pacemaker or implantable cardioverter-defibrillator (ICD) that was “non-MRI-conditional” (i.e., not approved by the Food and Drug Administration for MRI scanning). Methods Patients in the registry were referred for clinically indicated nonthoracic MRI at a field strength of 1.5 tesla. Devices were interrogated before and after MRI with the use of a standardized protocol and were appropriately reprogrammed before the scanning. The primary end points were death, generator or lead failure, induced arrhythmia, loss of capture, or electrical reset during the scanning. The secondary end points were changes in device settings. Results MRI was performed in 1000 cases in which patients had a pacemaker and in 500 cases in which patients had an ICD. No deaths, lead failures, losses of capture, or ventricular arrhythmias occurred during MRI. One ICD generator could not be interrogated after MRI and required immediate replacement; the device had not been appropriately programmed per protocol before the MRI. We observed six cases of self-terminating atrial fibrillation or flutter and six cases of partial electrical reset. Changes in lead impedance, pacing threshold, battery voltage, and P-wave and R-wave amplitude exceeded prespecified thresholds in a small number of cases. Repeat MRI was not associated with an increase in adverse events. Conclusions In this study, device or lead failure did not occur in any patient with a non-MRI-conditional pacemaker or ICD who underwent clinically indicated nonthoracic MRI at 1.5 tesla, was appropriately screened, and had the device reprogrammed in accordance with the prespecified protocol. (Funded by St. Jude Medical and others; MagnaSafe ClinicalTrials.gov number, NCT00907361 .).

Concepts: Cardiac electrophysiology, Electromagnetism, X-ray, Spin, Magnetic field, Artificial pacemaker, Magnetic resonance imaging, Implantable cardioverter-defibrillator

319

Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia)-which share many visual system properties with humans-can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds' histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult) task-namely, classification of suspicious mammographic densities (masses)-the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds' successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools.

Concepts: Medical physics, Mammography, X-ray, Image processing, Radiology, Medicine, Cancer, Medical imaging

235

In today’s healthcare climate, Magnetic Resonance Imaging (MRI) is often perceived as a commodity - a service where there are no meaningful differences in quality and thus an area in which patients can be advised to select a provider based on price and convenience alone. If this prevailing view is correct, then a patient should expect to receive the same radiological diagnosis regardless of which imaging center he or she visits or which radiologist reviews the examination. Based on their extensive clinical experience, the authors believe that this assumption is not correct and that it can negatively impact patient care, outcomes and costs.

Concepts: Illness, X-ray, Health care, Health care provider, Nuclear magnetic resonance, Medical imaging, Radiology, Magnetic resonance imaging

226

During the beer brewing process, bitter tasting cis and trans iso-α-acids are generated from the precursor α-acids found in hops. The absolute configurations of the α-acid (-)-humulone and several of its derivatives have now been elucidated by X-ray crystallography, thus resolving decades of confusion over the humulone isomerization mechanism.

Concepts: X-ray, X-ray crystallography, Brewery, Beer, Hops, Brewing

172

Image-guided endovascular interventions have gained increasing popularity in clinical practice, and magnetic resonance imaging (MRI) is emerging as an attractive alternative to X-ray fluoroscopy for guiding such interventions. Steering catheters by remote control under MRI guidance offers unique challenges and opportunities.

Concepts: Artificial pacemaker, Angiography, Nuclear magnetic resonance, Radiography, X-ray, Radiology, Medical imaging, Magnetic resonance imaging

171

Highly dispersive strontium carbonate (SrCO3) nanostructures with uniform dumbbell, ellipsoid, and rod-like morphologies were synthesized in methanol solution without any additives. These SrCO3 were characterized by X-ray diffraction, field emission scanning electron microscopy, and N2 adsorption-desorption. The results showed that the reaction temperature and the methanol/water ratio had important effects on the morphologies of SrCO3 particles. The dumbbell-like SrCO3 exhibited a Broader-Emmett-Teller surface area of 14.9 m2 g-1 and an average pore size of about 32 nm with narrow pore size distribution. The formation mechanism of the SrCO3 crystal was preliminary presented.

Concepts: Calcium carbonate, Chemical reaction, Strontium, Electron microscope, Electron, Strontianite, X-ray, Scanning electron microscope

171

We report the growth and characterization of ZnO/ZnTe core/shell nanowire arrays on indium tin oxide. Coating of the ZnTe layer on well-aligned vertical ZnO nanowires has been demonstrated by scanning electron microscope, tunneling electron microscope, X-ray diffraction pattern, photoluminescence, and transmission studies. The ZnO/ZnTe core/shell nanowire arrays were then used as the active layer and carrier transport medium to fabricate a photovoltaic device. The enhanced photocurrent and faster response observed in ZnO/ZnTe, together with the quenching of the UV emission in the PL spectra, indicate that carrier separation in this structure plays an important role in determining their optical response. The results also indicate that core/shell structures can be made into useful photovoltaic devices.

Concepts: Zinc oxide, Electron microscope, Electron, Optics, Electromagnetic radiation, Diffraction, Solar cell, X-ray

170

A 46-year old male patient was admitted with a history of an extremely painful right upper arm, associated with unilateral clubbing. Duplex scanning and magnetic resonance imaging were suggestive of a pseudo-aneurysm of the brachial artery. Digital angiography showed an irregular brachial artery, associated with a small pseudo-aneurysm. The brachial artery was partially resected and reconstructed with a venous interposition graft. Pathological examination provided the final diagnosis of fibromuscular dysplasia. Although more encountered in women, this case report describes the occurrence of fibromuscular dysplasia in an unusual location in a male patient with a long-term follow-up.

Concepts: Humerus, Brachial plexus, X-ray, Radiology, Nuclear magnetic resonance, Medical imaging, Magnetic resonance imaging, Blood pressure

170

Aluminum-doped zinc oxide ceramics with yttria doping (AZO:Y) ranging from 0 to 0.2 wt.% were fabricated by pressureless sintering yttria-modified nanoparticles in air at 1,300°C. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, a physical property measurement system, and a densimeter were employed to characterize the precursor nanoparticles and the sintered AZO ceramics. It was shown that a small amount of yttria doping can remarkably retard the growth of the as-received precursor nanoparticles, further improve the microstructure, refine the grain size, and enhance the density for the sintered ceramic. Increasing the yttria doping to 0.2 wt.%, the AZO:Y nanoparticles synthetized by a coprecipitation process have a nearly sphere-shaped morphology and a mean particle diameter of 15.1 nm. Using the same amount of yttria, a fully dense AZO ceramic (99.98% of theoretical density) with a grain size of 2.2 μm and a bulk resistivity of 4.6 × 10-3 Ω·cm can be achieved. This kind of AZO:Y ceramic has a potential to be used as a high-quality sputtering target to deposit ZnO-based transparent conductive films with better optical and electrical properties.

Concepts: Pottery, Clay, Scanning electron microscope, Electron, X-ray, Ceramic, Sintering, Ceramic engineering

169

A sample of the beta-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the beta-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the beta-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the beta-Ga2O3/GaN structure is 1.40 +/- 0.08 eV.

Concepts: Sapphire, Band gap, Gallium nitride, Valence band, Diffraction, Semiconductor, X-ray photoelectron spectroscopy, X-ray