SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: X chromosome

169

The dosage compensation complex (DCC) binds to single X chromosomes in Drosophila males and increases the transcription level of X-linked genes by approximately twofold. Male-specific lethal 2 (MSL2) together with MSL1 mediates the initial recruitment of the DCC to high-affinity sites in the X chromosome. MSL2 contains a DNA-binding cysteine-rich CXC domain that is important for X targeting. In this study, we determined the solution structure of MSL2 CXC domain by NMR spectroscopy. We identified three zinc ions in the CXC domain and determined the metal-to-cysteine connectivities from (1)H-(113)Cd correlation experiments. The structure reveals an unusual zinc-cysteine cluster composed of three zinc ions coordinated by six terminal and three bridging cysteines. The CXC domain exhibits unexpected structural homology to pre-SET motifs of histone lysine methyltransferases, expanding the distribution and structural diversity of the CXC domain superfamily. Our findings provide novel structural insight into the evolution and function of CXC domains.

Concepts: DNA, Gene, Genetics, Evolution, Chromosome, Y chromosome, Drosophila melanogaster, X chromosome

165

Mucopolysaccharidosis type II (MPS II) is an inherited X-linked disease associated with a deficiency in the enzyme iduronate 2-sulfatase due to iduronate 2-sulfatase gene (IDS) mutations. Recent studies in MPS II carriers did not find clinical involvement, but these were mainly performed by anamnesis and patients' self-reported description of signs and symptoms. So although it is rare in heterozygous carriers, investigations in other types of inherited X-linked disorders suggest that some clinical manifestations may be a possibility. The aim of this study was to evaluate the clinical pattern in female carriers of MPS II and to determine whether clinical symptoms were associated with the X-chromosome inactivation (XCI) pattern and age.

Concepts: DNA, Genetics, Epidemiology, Symptom, X chromosome, Mucopolysaccharidosis, Hunter syndrome, X-inactivation

47

Unlike the autosomes, recombination between the X chromosome and Y chromosome is often thought to be constrained to two small pseudoautosomal regions (PARs) at the tips of each sex chromosome. The PAR1 spans the first 2.7 Mb of the proximal arm of the human sex chromosomes, while the much smaller PAR2 encompasses the distal 320 kb of the long arm of each sex chromosome. In addition to the PAR1 and PAR2, there is a human-specific X-transposed region that was duplicated from the X to the Y. The X-transposed region is often not excluded from X-specific analyses, unlike the PARs, because it is not thought to routinely recombine. Genetic diversity is expected to be higher in recombining regions than in non-recombining regions because recombination reduces the effect of linked selection. In this study, we investigate patterns of genetic diversity in noncoding regions across the entire X chromosome of a global sample of 26 unrelated genetic females. We observe that genetic diversity in the PAR1 is significantly greater than the non-recombining regions (nonPARs). However, rather than an abrupt drop in diversity at the pseudoautosomal boundary, there is a gradual reduction in diversity from the recombining through the non-recombining region, suggesting that recombination between the human sex chromosomes spans across the currently defined pseudoautosomal boundary. A consequence of recombination spanning this boundary potentially includes increasing the rate of sex-linked disorders (e.g., de la Chapelle) and sex chromosome aneuploidies. In contrast, diversity in the PAR2 is not significantly elevated compared to the nonPAR, suggesting that recombination is not obligatory in the PAR2. Finally, diversity in the X-transposed region is higher than the surrounding nonPAR regions, providing evidence that recombination may occur with some frequency between the X and Y in the XTR.

Concepts: DNA, Human, Male, Chromosome, Y chromosome, Sex-determination system, X chromosome, XY sex-determination system

45

During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the “Barr body.” Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called “superdomains,” such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called “superloops.” DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.

Concepts: DNA, Gene, Cell nucleus, Chromosome, X chromosome, X-inactivation, XY sex-determination system, Barr body

29

Context: Recently, new clinically important information regarding Klinefelter syndrome (KS) has been published. We review aspects of epidemiology, endocrinology, metabolism, body composition, and neuropsychology with reference to recent genetic discoveries. Evidence Acquisition: PubMed was searched for “Klinefelter,” “Klinefelter’s,” and “XXY” in titles and abstracts. Relevant papers were obtained and reviewed, as well as other articles selected by the authors. Evidence Synthesis: KS is the most common sex chromosome disorder in males, affecting one in 660 men. The genetic background is the extra X-chromosome, which may be inherited from either parent. Most genes from the extra X undergo inactivation, but some escape and serve as the putative genetic cause of the syndrome. KS is severely underdiagnosed or is diagnosed late in life, roughly 25% are diagnosed, and the mean age of diagnosis is in the mid-30s. KS is associated with an increased morbidity resulting in loss of approximately 2 yr in life span with an increased mortality from many different diseases. The key findings in KS are small testes, hypergonadotropic hypogonadism, and cognitive impairment. The hypogonadism may lead to changes in body composition and a risk of developing metabolic syndrome and type 2 diabetes. The cognitive impairment is mainly in the area of language processing. Boys with KS are often in need of speech therapy, and many suffer from learning disability and may benefit from special education. Medical treatment is mainly testosterone replacement therapy to alleviate acute and long-term consequences of hypogonadism as well as treating or preventing the frequent comorbidity. Conclusions: More emphasis should be placed on increasing the rate of diagnosis and generating evidence for timing and dose of testosterone replacement. Treatment of KS should be a multidisciplinary task including pediatricians, speech therapists, general practitioners, psychologists, infertility specialists, urologists, and endocrinologists.

Concepts: Medicine, Endocrinology, Syndromes, Klinefelter's syndrome, Aneuploidy, Y chromosome, X chromosome, Mosaic

29

Esquilin JM, Takemoto CM, Green, NS. Female factor IX deficiency due to maternally inherited X-inactivation. X-chromosome inactivation is normally a random event that is regulated by the X chromosome itself. Rarely, females are affected by X-linked disorders from extremely skewed X-chromosome inactivation. Here, we report a family with hemophilia B with female expression through inherited X skewing that appears to be independent of either X chromosome. This finding suggests the possibility of a dominant autosomal contribution to inherited skewed X inactivation.

Concepts: DNA, Female, Chromosome, Gender, X chromosome, X-inactivation, Barr body, Skewed X-inactivation

27

Dosage compensation of X-linked gene products between the sexes in therians has culminated in the inactivation of one of the two X chromosomes in female cells. Over the years, the mouse has been the preferred animal model to study this X-chromosome inactivation (XCI) process in placental mammals (eutherians). Similar to the imprinted inactivation of the paternally inherited X chromosome (Xp) in marsupials (methatherians), the Xp is inactivated during early mouse development. In this eutherian model, cell derivatives of the primitive endoderm (PE) and trophectoderm (TE) will continue to display this imprinted form of XCI. Cells developing from the mouse epiblast will reactivate the Xp, and subsequently initiate XCI of either the Xp or the maternally inherited Xm, in a random manner. Examination of XCI in other eutherians and in metatherians, however, indicates clear differences in the form and timing of XCI. This review highlights and discusses imprinted and random XCI from such a comparative viewpoint.

Concepts: Gene, Chromosome, Mammal, X chromosome, X-inactivation, Eutheria, Metatheria, Theria

27

47,XXY (Klinefelter syndrome) is the most frequent sex chromosomal disorder and affects approximately one in 660 newborn boys. The syndrome is characterized by varying degrees of cognitive, social, behavioral, and learning difficulties and in adulthood additionally primary testicular failure with small testes, hypergonadotropic hypogonadism, tall stature, and eunuchoid body proportions. The phenotype is variable ranging from “near-normal” to a significantly affected individual. In addition, newborns with Klinefelter syndrome generally present with a normal male phenotype and the only consistent clinical finding in KS is small testes, that are most often not identified until after puberty. Decreased awareness of this syndrome among health professionals and a general perception that all patients with 47,XXY exhibit the classic textbook phenotype results in a highly under-diagnosed condition with up to 75% of the patients left undetected. Typically, diagnosis is delayed with the majority of patients identified during fertility workup in adulthood, and only 10% of patients diagnosed prior to puberty. Early detection of this syndrome is recommended in order to offer treatment and intervention at the appropriate ages and stages of development for the purpose of preventing osteopenia/osteoporosis, metabolic syndrome, and other medical conditions related to hypogonadism and to the XXY as well as minimizing potential learning and psychosocial problems. The aim of this review is to present the clinical aspects of XXY and the age-specific recommendations for medical management. © 2013 Wiley Periodicals, Inc.

Concepts: Psychology, Syndromes, Testicle, Klinefelter's syndrome, Aneuploidy, Y chromosome, Puberty, X chromosome

27

X and Y chromosomal variations including tetrasomy and pentasomy conditions are rare and occur in 1:18,000-1:100,000 male births. The most common sex chromosome aneuploidy is 47, XXY for which there is a rich literature delineating the physical and neurobehavioral phenotype. Although the more complex chromosome aneuploidies 48, XXYY, 48, XXXY, and 49, XXXXY are often compared with 47, XXY (Klinefelter syndrome) because of shared features including tall stature and hypergonadotropic hypogonadism, there is a wider spectrum of physical and cognitive abilities that have recently been delineated. The phenotypic presentation of the boys with more severe aneuploidy shares some characteristics with 47, XXY, but there are also other unique and distinctive features. Previously unappreciated intact nonverbal skills have been demonstrated in association with severe developmental dyspraxia. MRI findings of white matter hyperintensities may underlie cognitive deficits and deserve further study. This report discusses what is known about clinical variability in the XY syndromes collectively evaluated through careful multidisciplinary clinical evaluation including the clinical and neurobehavioral aspects of these conditions. Variability in clinical and cognitive functioning may reflect skewed X inactivation, mosaicism, or epigenetic factors that warrant further investigation. © 2013 Wiley Periodicals, Inc.

Concepts: Chromosome, Klinefelter's syndrome, Aneuploidy, Y chromosome, X chromosome, X-inactivation, Mosaic, Tetrasomy

22

Genetics play an important role in the evaluation of the infertile male. The current limitations of classifying the genetic contribution to male infertility and the importance of phenotyping men are discussed, and the core concepts necessary to interpret most genetic studies are reviewed. The current genetic assays used clinically are discussed in detail. The use and interpretation of the cystic fibrosis transmembrane receptor assay are examined in the context of men with clinical bilateral absence of the vas deferens, a karyotype and Klinefelter syndrome, and Y chromosome microdeletions. The role of hormones and epigenetics in evaluating the genetic reproductive potential of men is discussed briefly. A summary of what the field might look like in 2034 is presented.

Concepts: Gene, Cystic fibrosis, Andrology, Infertility, Aneuploidy, Y chromosome, X chromosome, Vas deferens