Discover the most talked about and latest scientific content & concepts.

Concept: World Health Organization essential medicines


Background Cryptococcal meningitis accounts for more than 100,000 human immunodeficiency virus (HIV)-related deaths per year. We tested two treatment strategies that could be more sustainable in Africa than the standard of 2 weeks of amphotericin B plus flucytosine and more effective than the widely used fluconazole monotherapy. Methods We randomly assigned HIV-infected adults with cryptococcal meningitis to receive an oral regimen (fluconazole [1200 mg per day] plus flucytosine [100 mg per kilogram of body weight per day] for 2 weeks), 1 week of amphotericin B (1 mg per kilogram per day), or 2 weeks of amphotericin B (1 mg per kilogram per day). Each patient assigned to receive amphotericin B was also randomly assigned to receive fluconazole or flucytosine as a partner drug. After induction treatment, all the patients received fluconazole consolidation therapy and were followed to 10 weeks. Results A total of 721 patients underwent randomization. Mortality in the oral-regimen, 1-week amphotericin B, and 2-week amphotericin B groups was 18.2% (41 of 225), 21.9% (49 of 224), and 21.4% (49 of 229), respectively, at 2 weeks and was 35.1% (79 of 225), 36.2% (81 of 224), and 39.7% (91 of 229), respectively, at 10 weeks. The upper limit of the one-sided 97.5% confidence interval for the difference in 2-week mortality was 4.2 percentage points for the oral-regimen group versus the 2-week amphotericin B groups and 8.1 percentage points for the 1-week amphotericin B groups versus the 2-week amphotericin B groups, both of which were below the predefined 10-percentage-point noninferiority margin. As a partner drug with amphotericin B, flucytosine was superior to fluconazole (71 deaths [31.1%] vs. 101 deaths [45.0%]; hazard ratio for death at 10 weeks, 0.62; 95% confidence interval [CI], 0.45 to 0.84; P=0.002). One week of amphotericin B plus flucytosine was associated with the lowest 10-week mortality (24.2%; 95% CI, 16.2 to 32.1). Side effects, such as severe anemia, were more frequent with 2 weeks than with 1 week of amphotericin B or with the oral regimen. Conclusions One week of amphotericin B plus flucytosine and 2 weeks of fluconazole plus flucytosine were effective as induction therapy for cryptococcal meningitis in resource-limited settings. (ACTA Current Controlled Trials number, ISRCTN45035509 .).

Concepts: AIDS, Africa, Tuberculosis, Amphotericin B, Antifungals, Flucytosine, Antifungal drug, World Health Organization essential medicines


We aim in this study to provide levels of susceptibility of 162 bloodstream isolates of non-Candida albicans and non-C. tropicalis species from a sentinel program conducted in 11 hospitals in Brazil. Additionally, we compared the broth microdilution (BMD) method of the European Committee of Susceptibility Testing (EUCAST) with Clinical Laboratory Standards Institute (CLSI) BMD method for fluconazole, itraconazole, voriconazole, and amphotericin B. The study included 103 C. parapsilosis, 38 C. glabrata, 8 C. orthopsilosis, and 7 C. krusei isolates, and single isolates of Pichia anomala, C. famata, C. lusitaniae, C. kefyr, C. guilliermondii, and C. metapsilosis. Of note, we observed cross-resistance between fluconazole and voriconazole for two isolates being one C. parapsilosis and one C. glabrata. Good essential agreement (EA) was observed between the EUCAST and the CLSI results for C. parapsilosis and for fluconazole, itraconazole, voriconazole, and amphotericin B, respectively: 98%, 99%, 98%, and 97%. Otherwise, for C. glabrata, the EA for fluconazole was 84.2% and for voriconazole 89.4%. Because data from Brazil are scarce, our results contribute to the consolidation of the database of candidemia agents and monitoring of trends in the profile of drug resistance.

Concepts: Laboratory, Amphotericin B, The Europeans, Antifungals, Candidiasis, Ergosterol, Triazole, World Health Organization essential medicines


We report the detection of high-titre anti-Histoplasma capsulatum IgM in the serum of three young adult males occupationally exposed to bat guano. Multidrug treatment with trimethoprim- sulfamethoxazole was started, followed by ciprofloxacin, clarithromycin, metamizole sodium, rifampicin/isoniazid/pyrazinamide, moxifloxacin and lastly amphotericin B and ceftriaxone. Despite treatment the condition of one patient deteriorated, and he died 23 days after exposure. The other two patients recovered after receiving similar therapy with the addition of voriconazole. They are currently being treated with itraconazole for a 1-year period.

Concepts: Patient, Amphotericin B, Bat, Antifungals, Ergosterol, Histoplasmosis, Guano, World Health Organization essential medicines


A simple, reliable, highly sensitive and selective spectrofluorimetric method has been developed for determination of certain aminoglycosides namely amikacin sulfate, tobramycin, neomycin sulfate, gentamicin sulfate, kanamycin sulfate and streptomycin sulfate. The method is based on the formation of a charge transfer complexes between these drugs and safranin in buffer solution of pH 8. The formed complexes were quantitatively extracted with chloroform under the optimized experimental conditions. These complexes showed an excitation maxima at 519-524 nm and emission maxima at 545-570 nm. The calibration plots were constructed over the range of 4-60 pg mL(-1) for amikacin, 4-50 pg mL(-1) for gentamicin, neomycin and kanamycin, 4-40 pg mL(-1) for streptomycin and 5-50 pg mL(-1) for tobramycin. The proposed method was successfully applied to the analysis of the cited drugs in dosage forms. The proposed method was validated according to ICH and USP guidelines with respect to specificity, linearity, accuracy, precision and robustness. The high sensitivity of the proposed method allowed determination of amikacin and gentamicin in spiked and real human plasma.

Concepts: Pharmacology, Pseudomonas aeruginosa, Aminoglycoside, Aminoglycoside antibiotics, Gentamicin, World Health Organization essential medicines, Streptomycin, Neomycin


Many prodrug reviews describe specific examples of the successful application of prodrug technology to produce blockbuster drugs, such as simvastatin, omeprazole, acyclovir and enalapril. These reviews are helpful to understand the previous success stories and case histories of prodrug technology. The aim of the current review seeks to more clearly define quantitative trends in the changes in the physicochemical property parameters between the successful prodrug and the active parent molecule. This information can serve to guide medicinal chemists toward more successful pharmaceutical prodrugs in the future.

Concepts: Pharmacology, Electrochemistry, Physical chemistry, Pharmaceutical drug, Prodrugs, World Health Organization essential medicines, Enalapril, Prodrug


Abstract This study investigated genotypic and phenotypic features of antimicrobial resistance of Proteus mirabilis isolated from chicken products. Resistance to a broad spectrum of antimicrobial agents was commonly observed in the test isolates: tetracycline (100%), sulfamethoxazole (80%), chloramphenicol (66%), nalidixic acid (66%), ampicillin (60%), streptomycin (56%), ciprofloxacin (52%), kanamycin (46%), gentamicin (38%), ceftriaxone (36%), cefotaxime (34%), ceftiofur (22%), and amoxicillin-clavulanic acid (16%). The β-lactamases TEM-1 and OXA-1, and extended-spectrum β-lactamases CTX-M-9 and CMY-2 were detected in β-lactam-resistant isolates. Single mutations in gyrA and parC were found to be contributing factors for fluoroquinolone resistance. Plasmid-mediated quinolone resistance (PMQR) genes qnrA and qnrD were detected in six fluoroquinolone-resistant isolates and a superintegron element, SXT, was detected in 14 out of 50 isolates. The high-level of antimicrobial resistance of P. mirabilis isolated from food products may pose a potential threat to public health.

Concepts: Gene, Evolution, Microbiology, Antibiotic resistance, Quinolone, World Health Organization essential medicines, Proteus mirabilis, Nalidixic acid


Development of optimized pediatric formulations for oral administration can be challenging, time consuming, and financially intensive process. Since its inception, the biopharmaceutical classification system (BCS) has facilitated the development of oral drug formulations destined for adults. At least theoretically, the BCS principles are applied also to pediatrics. A comprehensive age-appropriate BCS has not been fully developed. The objective of this work was to provisionally classify oral drugs listed on the latest World Health Organization’s Essential Medicines List for Children into an age-appropriate BCS. A total of 38 orally administered drugs were included in this classification. Dose numbers were calculated using age-appropriate initial gastric volume for neonates, 6-month-old infants, and children aging 1 year through adulthood. Using age-appropriate initial gastric volume and British National Formulary age-specific dosing recommendations in the calculation of dose numbers, the solubility classes shifted from low to high in pediatric subpopulations of 12 years and older for amoxicillin, 5 years, 12 years and older for cephalexin, 9 years and older for chloramphenicol, 3-4 years, 9-11 and 15 years and older for diazepam, 18 years and older (adult) for doxycycline and erythromycin, 8 years and older for phenobarbital, 10 years and older for prednisolone, and 15 years and older for trimethoprim. Pediatric biopharmaceutics are not fully understood where several knowledge gaps have been recently emphasized. The current biowaiver criteria are not suitable for safe application in all pediatric populations.

Concepts: Pharmacology, Infant, World Health Organization, World Health Organization essential medicines


To compare azithromycin (AZT) and benzathine penicillin (BP) in the treatment of recurrent tonsillitis in children.

Concepts: Penicillin, World Health Organization essential medicines, Tonsillitis, Benzathine benzylpenicillin


Antimicrobial resistance of Staphylococcus aureus in human and veterinary medicine is a serious worldwide problem. The aim of this study was to investigate the prevalence of S. aureus in commercial broiler chickens as well as to establish antimicrobial susceptibility and the distribution of genetic determinants conferring resistance and virulence. One hundred and ninety-four samples were aseptically collected from broiler chicken slaughterhouses and retail outlets around the Durban metropolitan area in South Africa. Microbiological and molecular methods were used to detect the presence of S. aureus as well as its resistance- and virulence-associated genes. Polymerase chain reaction (PCR) was used to confirm the presence of S. aureus by amplifying the nuc gene. Approximately 54% of 194 samples were positive for S. aureus. The disc diffusion technique was used to investigate antimicrobial susceptibility profiles of the S. aureus isolates to a battery of 10 antimicrobial agents, namely ampicillin, chloramphenicol, gentamicin, erythromycin, cefoxitin, kanamycin, streptomycin, tetracycline, vancomycin and trimethoprim. The results demonstrated that S. aureus isolates of abattoir origin had a high level (79.4%) of resistance to tetracycline, followed by ampicillin, vancomycin, cefoxitin, trimethoprim, erythromycin and streptomycin with resistance rates of 65.1%, 61.9%, 60.3%, 58.7%, 57.1% and 46.0%, respectively. Staphylococcus aureus isolates of retail origin exhibited higher antimicrobial resistance prevalence rates than those of abattoir origin. Tetracycline had the highest resistance rate (100%), followed by cefoxitin (91.7%), erythromycin (83.3%), streptomycin (83.3%) and kanamycin (66.7%). All isolates were resistant to two or more antimicrobial agents. Out of the four virulence genes that were screened, only two were detected (coagulase and protein A); however, their prevalence rates were very low. All antimicrobial resistance genes screened were detected (mecA, BlaZ and tetK), although their prevalence did not correspond with antimicrobial susceptibility testing.

Concepts: DNA, Molecular biology, Microbiology, Staphylococcus aureus, Antibiotic resistance, Methicillin-resistant Staphylococcus aureus, Broiler, World Health Organization essential medicines


Pharmaceutical manufacturing typically uses batch processing at multiple locations. Disadvantages of this approach include long production times and the potential for supply chain disruptions. As a preliminary demonstration of an alternative approach, we report here the continuous-flow synthesis and formulation of active pharmaceutical ingredients in a compact, reconfigurable manufacturing platform. Continuous end-to-end synthesis in the refrigerator-sized [1.0 meter (width) × 0.7 meter (length) × 1.8 meter (height)] system produces sufficient quantities per day to supply hundreds to thousands of oral or topical liquid doses of diphenhydramine hydrochloride, lidocaine hydrochloride, diazepam, and fluoxetine hydrochloride that meet U.S. Pharmacopeia standards. Underlying this flexible plug-and-play approach are substantial enabling advances in continuous-flow synthesis, complex multistep sequence telescoping, reaction engineering equipment, and real-time formulation.

Concepts: Pharmaceutical drug, Active ingredient, Length, CYP3A4, Fluoxetine, CYP2D6, World Health Organization essential medicines, Diphenhydramine