Discover the most talked about and latest scientific content & concepts.

Concept: World energy resources and consumption


To realize the sustainable energy supply in smart city, it is essential to maximize energy scavenging from the city environments for achieving the self-powered functions of some intelligent devices and sensors. Although the solar energy can be well harvested by using existing technologies, the large amounts of wasted wind energy in the city cannot be effectively utilized since the conventional wind turbine generators can only be installed in remote areas due to the large volumes and the safety issues. Here, we rationally design a hybridized nanogenerator, including a solar cell (SC) and a triboelectric nanogenerator (TENG), that can individually/simultaneously scavenging solar and wind energies, which can be extensively installed on the roofs of the city buildings. Under the same device area of about 120 mm×22 mm, the SC can deliver a largest output power of about 8 mW, while the output power of the TENG can be up to 26 mW. Impedance matching between the SC and TENG has been achieved by using a transformer to decrease the impedance of the TENG. The hybridized nanogenerator has a larger output current and a better charging performance than that of the individual SC or TENG. This research presents a feasible approach to maximize solar and wind energies scavenging from the city environments with the aim to realize some self-powered functions in smart city.

Concepts: Sun, Renewable energy, Solar power, Nuclear power, Wind power, Energy development, World energy resources and consumption, Wind turbine


Human-made material stocks accumulating in buildings, infrastructure, and machinery play a crucial but underappreciated role in shaping the use of material and energy resources. Building, maintaining, and in particular operating in-use stocks of materials require raw materials and energy. Material stocks create long-term path-dependencies because of their longevity. Fostering a transition toward environmentally sustainable patterns of resource use requires a more complete understanding of stock-flow relations. Here we show that about half of all materials extracted globally by humans each year are used to build up or renew in-use stocks of materials. Based on a dynamic stock-flow model, we analyze stocks, inflows, and outflows of all materials and their relation to economic growth, energy use, and CO2 emissions from 1900 to 2010. Over this period, global material stocks increased 23-fold, reaching 792 Pg (±5%) in 2010. Despite efforts to improve recycling rates, continuous stock growth precludes closing material loops; recycling still only contributes 12% of inflows to stocks. Stocks are likely to continue to grow, driven by large infrastructure and building requirements in emerging economies. A convergence of material stocks at the level of industrial countries would lead to a fourfold increase in global stocks, and CO2 emissions exceeding climate change goals. Reducing expected future increases of material and energy demand and greenhouse gas emissions will require decoupling of services from the stocks and flows of materials through, for example, more intensive utilization of existing stocks, longer service lifetimes, and more efficient design.

Concepts: Carbon dioxide, Climate change, Material, Sustainability, Peak oil, Greenhouse gas, Global warming, World energy resources and consumption


Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.

Concepts: Wind power, Bald Eagle, World energy resources and consumption, Wind turbine, Eagle, Golden Eagle, Eagles, Coat of arms of Mexico


Since the 1970s, installed solar photovoltaic capacity has grown tremendously to 230 gigawatt worldwide in 2015, with a growth rate between 1975 and 2015 of 45%. This rapid growth has led to concerns regarding the energy consumption and greenhouse gas emissions of photovoltaics production. We present a review of 40 years of photovoltaics development, analysing the development of energy demand and greenhouse gas emissions associated with photovoltaics production. Here we show strong downward trends of environmental impact of photovoltaics production, following the experience curve law. For every doubling of installed photovoltaic capacity, energy use decreases by 13 and 12% and greenhouse gas footprints by 17 and 24%, for poly- and monocrystalline based photovoltaic systems, respectively. As a result, we show a break-even between the cumulative disadvantages and benefits of photovoltaics, for both energy use and greenhouse gas emissions, occurs between 1997 and 2018, depending on photovoltaic performance and model uncertainties.

Concepts: Solar cell, Photovoltaics, Natural gas, Renewable energy, Solar energy, Photovoltaic module, Greenhouse gas, World energy resources and consumption


The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.

Concepts: Nuclear physics, Nuclear fission, Coal, Nuclear power, Energy development, Electricity generation, Sustainable energy, World energy resources and consumption


The aim of this paper is to analyze and quantify the average healthcare centres' energy behavior and estimate the possibilities of savings through the use of concrete measures to reduce their energy demand in Extremadura, Spain. It provides the average energy consumption of 55 healthcare centres sized between 500 and 3,500 m2. The analysis evaluated data of electricity and fossil fuel energy consumption as well as water use and other energy-consuming devices. The energy solutions proposed to improve the efficiency are quantified and listed. The average annual energy consumption of a healthcare centre is 86.01 kWh/m2, with a standard deviation of 16.8 kWh/m2. The results show that an annual savings of €4.77/m2 is possible. The potential to reduce the energy consumption of a healthcare centre of size 1,000 m2 is 10,801 kWh by making an average investment of €11,601, thus saving €2,961/year with an average payback of 3.92 years.

Concepts: Carbon dioxide, Energy, Investment, Fossil fuel, Renewable energy, Energy development, Greenhouse gas, World energy resources and consumption


The environmental costs of economic development have received increasing attention during the last years. According to the World Energy Outlook (2013) sustainable energy policies should be promoted in order to spur economic growth and environmental protection in a global context, particularly in terms of reducing greenhouse gas emissions that contribute to climate change. Within this framework, the European Union aims to achieve the “20-20-20” targets, including a 20% reduction in EU greenhouse gas emissions from 1990 levels, a raise in the share of EU energy consumption produced from renewable resources to 20% and a 20% improvement in the EU’s energy efficiency. Furthermore, the EU “Energy Roadmap 2050” has been recently adopted as a basis for developing a long-term European energy framework, fighting against climate change through the implementation of energy efficiency measures and the reduction of emissions. This paper focuses on the European context and attempts to explain the impact of economic growth on CO2 emissions through the estimation of an Environmental Kuznets Curve (EKC) using panel data. Moreover, since energy seems to be at the heart of the environmental problem it should also form the core of the solution, and therefore we provide some extensions of the EKC by including renewable energy sources as explanatory variables in the proposed models. Our data sets are referred to the 27 countries of the European Union during the period 1996-2010. With this information, our empirical results provide some interesting evidence about the significant impacts of renewable energies on CO2 emissions, suggesting the existence of an extended EKC.

Concepts: Sustainability, Renewable energy, Peak oil, Wind power, Greenhouse gas, Kyoto Protocol, World energy resources and consumption, Energy policy


Modern society uses massive amounts of energy. Usage rises as population and affluence increase, and energy production and use often have an impact on biodiversity or natural areas. To avoid a business-as-usual dependence on coal, oil, and gas over the coming decades, society must map out a future energy mix that incorporates alternative sources. This exercise can lead to radically different opinions on what a sustainable energy portfolio might entail, so an objective assessment of the relative costs and benefits of different energy sources is required. We evaluated the land use, emissions, climate, and cost implications of 3 published but divergent storylines for future energy production, none of which was optimal for all environmental and economic indicators. Using multicriteria decision-making analysis, we ranked 7 major electricity-generation sources (coal, gas, nuclear, biomass, hydro, wind, and solar) based on costs and benefits and tested the sensitivity of the rankings to biases stemming from contrasting philosophical ideals. Irrespective of weightings, nuclear and wind energy had the highest benefit-to-cost ratio. Although the environmental movement has historically rejected the nuclear energy option, new-generation reactor technologies that fully recycle waste and incorporate passive safety systems might resolve their concerns and ought to be more widely understood. Because there is no perfect energy source however, conservation professionals ultimately need to take an evidence-based approach to consider carefully the integrated effects of energy mixes on biodiversity conservation. Trade-offs and compromises are inevitable and require advocating energy mixes that minimize net environmental damage. Society cannot afford to risk wholesale failure to address energy-related biodiversity impacts because of preconceived notions and ideals.

Concepts: Natural gas, Fossil fuel, Nuclear power, Wind power, Energy development, Alternative energy, World energy resources and consumption, Energy security


The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well-being-energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy.

Concepts: Natural gas, Freshwater, Coal, Peak oil, Nuclear power, Globalization, Greenhouse gas, World energy resources and consumption


This study evaluates life cycle environmental impacts associated with chocolate products made and consumed in the UK. The paper focuses on three representative chocolate products occupying 90% of the market: ‘moulded chocolate’, ‘chocolate countlines’ and ‘chocolates in bag’. The impacts were estimated using life cycle assessment (LCA) as a tool and following the ReCiPe impact assessment method. The water footprint was also considered. For example, the global warming potential ranges between 2.91 and 4.15 kg CO2eq., primary energy demand from 30 to 41 MJ and the water footprint, including water stress, from 31 to 63 l per kilogram of chocolate. The raw materials are the major hotspot across all impact categories for all three product types, followed by the chocolate production process and packaging. The raw material impacts are mainly due to milk powder, cocoa derivatives, sugar and palm oil. The sensitivity analysis shows that the results for global warming potential are sensitive to land-use change (LUC) associated with cocoa production, increasing the impact of the chocolate products by three to four times if LUC is involved. The improvement opportunities targeting the key contributing stages suggest that GWP of chocolates could be reduced by 14%-19%. Chocolate countlines have the highest contribution to the total impacts at the UK level (37%-43%), followed by chocolates in bag (28%-33%). Moulded chocolates and other chocolate confectionary make up the rest of the impacts, with a roughly equal share each. Chocolate consumption in the UK contributes 4.7% to the primary energy consumption and 2.4% to the GHG emissions from the whole food and drink sector. The results of this work will be of interest to policy makers, chocolate producers and consumers, helping them to make more informed decisions towards sustainable production and consumption of chocolate products.

Concepts: Carbon dioxide, Energy, Sustainability, Greenhouse gas, Global warming potential, Life cycle assessment, Chocolate, World energy resources and consumption