SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Wind turbine

211

Wind turbines continuously remove kinetic energy from the lower troposphere, thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is, therefore, constrained by the rate of kinetic energy replenishment from the atmosphere above. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 W m(-2) within large wind farms. However, in this study, we show that considerably higher power generation rates may be sustainable over some open ocean areas. In particular, the North Atlantic is identified as a region where the downward transport of kinetic energy may sustain extraction rates of 6 W m(-2) and above over large areas in the annual mean. Furthermore, our results indicate that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where sustained high rates of downward transport of kinetic energy and thus, high rates of kinetic energy extraction may be geophysical possible. While no commercial-scale deep water wind farms yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.

Concepts: Energy, Water, Atlantic Ocean, Ocean, Wind, Wind power, Wind farm, Wind turbine

59

With often florid allegations about health problems arising from wind turbine exposure now widespread, nocebo effects potentially confound any future investigation of turbine health impact. Historical audits of health complaints are therefore important. We test 4 hypotheses relevant to psychogenic explanations of the variable timing and distribution of health and noise complaints about wind farms in Australia.

Concepts: Australia, Null hypothesis, Wind power, Wind farm, Floating wind turbine, Wind turbine, Windmill, Éolienne Bollée

53

To realize the sustainable energy supply in smart city, it is essential to maximize energy scavenging from the city environments for achieving the self-powered functions of some intelligent devices and sensors. Although the solar energy can be well harvested by using existing technologies, the large amounts of wasted wind energy in the city cannot be effectively utilized since the conventional wind turbine generators can only be installed in remote areas due to the large volumes and the safety issues. Here, we rationally design a hybridized nanogenerator, including a solar cell (SC) and a triboelectric nanogenerator (TENG), that can individually/simultaneously scavenging solar and wind energies, which can be extensively installed on the roofs of the city buildings. Under the same device area of about 120 mm×22 mm, the SC can deliver a largest output power of about 8 mW, while the output power of the TENG can be up to 26 mW. Impedance matching between the SC and TENG has been achieved by using a transformer to decrease the impedance of the TENG. The hybridized nanogenerator has a larger output current and a better charging performance than that of the individual SC or TENG. This research presents a feasible approach to maximize solar and wind energies scavenging from the city environments with the aim to realize some self-powered functions in smart city.

Concepts: Sun, Renewable energy, Solar power, Nuclear power, Wind power, Energy development, World energy resources and consumption, Wind turbine

49

Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 10(5) km(2) region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m(-2), whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m(-2), with VKE capturing this combination in a comparatively simple way.

Concepts: Energy, Kinetic energy, Wind, Wind power, Wind farm, Floating wind turbine, Wind turbine, Windmill

39

Objective: The development of new wind farms in many parts of the world has been thwarted by public concern that subaudible sound (infrasound) generated by wind turbines causes adverse health effects. Although the scientific evidence does not support a direct pathophysiological link between infrasound and health complaints, there is a body of lay information suggesting a link between infrasound exposure and health effects. This study tested the potential for such information to create symptom expectations, thereby providing a possible pathway for symptom reporting. Method: A sham-controlled double-blind provocation study, in which participants were exposed to 10 min of infrasound and 10 min of sham infrasound, was conducted. Fifty-four participants were randomized to high- or low-expectancy groups and presented audiovisual information, integrating material from the Internet, designed to invoke either high or low expectations that exposure to infrasound causes specified symptoms. Results: High-expectancy participants reported significant increases, from preexposure assessment, in the number and intensity of symptoms experienced during exposure to both infrasound and sham infrasound. There were no symptomatic changes in the low-expectancy group. Conclusions: Healthy volunteers, when given information about the expected physiological effect of infrasound, reported symptoms that aligned with that information, during exposure to both infrasound and sham infrasound. Symptom expectations were created by viewing information readily available on the Internet, indicating the potential for symptom expectations to be created outside of the laboratory, in real world settings. Results suggest psychological expectations could explain the link between wind turbine exposure and health complaints. (PsycINFO Database Record © 2013 APA, all rights reserved).

Concepts: Symptomatic treatment, Wind power, Wind farm, Floating wind turbine, Wind turbine, Windmill, Capacity factor, Éolienne Bollée

36

Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world’s all-purpose power from wind in a 2030 clean-energy economy.

Concepts: Energy, Kinetic energy, Potential energy, Renewable energy, Wind power, Joule, Wind turbine, Windmill

32

Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.

Concepts: Wind power, Bald Eagle, World energy resources and consumption, Wind turbine, Eagle, Golden Eagle, Eagles, Coat of arms of Mexico

28

Sustainability assessments of coastal beach exploitation are difficult because the identification of appropriate monitoring methodologies and evaluation procedures is still ongoing. In particular, the most suitable procedure for the application of sustainability assessment to coastal beaches remains uncertain. This paper presents a complete sustainability assessment process for coastal beach exploitation based on the analytic hierarchy process (AHP). We developed an assessment framework consisting of 14 indicators derived from the three dimensions of suitability, economic and social value, and ecosystem. We chose a wind power project on a coastal beach of Yancheng as a case study. The results indicated that the wind power farms on the coastal beach were not completely in keeping with sustainable development theory. The construction of the wind power farms had some negative impacts. Therefore, in the design stage, wind turbines should be designed and planned carefully to minimize these negative impacts. In addition, the case study demonstrated that the AHP was capable of addressing the complexities associated with the sustainability of coastal beaches.

Concepts: Assessment, Sustainability, Analytic Hierarchy Process, Renewable energy, Wind power, Wind farm, Wind turbine, Arithmetical hierarchy

27

Area-wide measurements of low frequency wind turbine noise were conducted in residential areas adjacent to two different wind turbine facilities in Southern California. The residential measurement location distances ranged from 615 m to 9 km from wind turbines. Additional measurements were also conducted at distances as close as 125 m from the wind turbines. To obtain the residential measurement data, simultaneous digital recordings were made inside and outside residences using microphones designed to achieve a linear response down to 0.07 Hz. The outdoor measurements were conducted with a ground board and two windscreens. The recorded data at residences were analyzed using a cross-spectral technique to minimize the effects of wind acting on the microphone. The data clearly show the presence of infrasound at the blade passage frequency of the wind turbines as well as at the associated harmonics. The primary range of interest is frequencies between 0 and 10 Hz. The residential data in some instances indicate higher levels of infrasound indoors compared to outdoors, indicating a potential amplification of very low frequency sound energy by the residential structure. Representative infrasound data for both facilities are presented and discussed.

Concepts: Energy, Acoustics, Hertz, Sound, Wind turbine, Windmill, Éolienne Bollée, Environmental effects of wind power

25

Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m(-2)) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m(-2)) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m(-2) of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

Concepts: Energy, Renewable energy, Wind, Wind power, Electrical generator, Wind turbine, Windmill, Environmental effects of wind power