Discover the most talked about and latest scientific content & concepts.

Concept: Wild Turkey


The 13th century Puebloan depopulation of the Four Corners region of the US Southwest is an iconic episode in world prehistory. Studies of its causes, as well as its consequences, have a bearing not only on archaeological method and theory, but also social responses to climate change, the sociology of social movements, and contemporary patterns of cultural diversity. Previous research has debated the demographic scale, destinations, and impacts of Four Corners migrants. Much of this uncertainty stems from the substantial differences in material culture between the Four Corners vs. hypothesized destination areas. Comparable biological evidence has been difficult to obtain due to the complete departure of farmers from the Four Corners in the 13th century CE and restrictions on sampling human remains. As an alternative, patterns of genetic variation among domesticated species were used to address the role of migration in this collapse. We collected mitochondrial haplotypic data from dog (Canis lupus familiaris) and turkey (Meleagris gallopavo) remains from archaeological sites in the most densely-populated portion of the Four Corners region, and the most commonly proposed destination area for that population under migration scenarios. Results are consistent with a large-scale migration of humans, accompanied by their domestic turkeys, during the 13th century CE. These results support scenarios that suggest contemporary Pueblo peoples of the Northern Rio Grande are biological and cultural descendants of Four Corners populations.

Concepts: DNA, Population, Dog, Arizona, Archaeology, Wild Turkey, Four Corners, Puebloan peoples


Late Preclassic (300 BC-AD 100) turkey remains identified at the archaeological site of El Mirador (Petén, Guatemala) represent the earliest evidence of the Mexican turkey (Meleagris gallopavo) in the ancient Maya world. Archaeological, zooarchaeological, and ancient DNA evidence combine to confirm the identification and context. The natural pre-Hispanic range of the Mexican turkey does not extend south of central Mexico, making the species non-local to the Maya area where another species, the ocellated turkey (Meleagris ocellata), is indigenous. Prior to this discovery, the earliest evidence of M. gallopavo in the Maya area dated to approximately one thousand years later. The El Mirador specimens therefore represent previously unrecorded Preclassic exchange of animals from northern Mesoamerica to the Maya cultural region. As the earliest evidence of M. gallopavo found outside its natural geographic range, the El Mirador turkeys also represent the earliest indirect evidence for Mesoamerican turkey rearing or domestication. The presence of male, female and sub-adult turkeys, and reduced flight morphology further suggests that the El Mirador turkeys were raised in captivity. This supports an argument for the origins of turkey husbandry or at least captive rearing in the Preclassic.

Concepts: Maya civilization, Guatemala, Mexico, Turkey, Mesoamerica, Meleagrididae, Wild Turkey, Ocellated Turkey


ABSTRACT Edible bird’s nest (EBN) is made of the swiftlets' saliva which has attracted rather more attention owing to its nutritious and medical properties. Though protein constitutes the main composition and plays an important role in EBN, few studies have focused on the proteomic profile of EBN. The purpose of this study was to obtain the proteomic map and clarify the common proteins of EBN, Liquid-phase isoelectric focusing (LIEF) was combined with two-dimensional electrophoresis (2-DE) for comprehensive analysis of EBN proteins, 20-100 protein spots were detected on the 2-DE maps of 15 different origin EBN samples, the proteins mainly distributed in four taxa (A, B, C, D) according to their molecular mass, taxon A and D were the common proteins and can even be other characteristic proteins of EBN. Taxon A was identified by MALDI-TOF-TOF/MS, and was found to be homologous to acidic mammalian chitinase-like [Meleagris gallopavo] which is the family 18 of glycosyl hydrolase. Key words: edible bird’s nest, protein, 2-DE, acidic mammalian chitinase, Liquid-phase isoelectric focusing.

Concepts: Protein, Molecular biology, Nutrition, Enzyme, Gel electrophoresis, Isoelectric point, Two-dimensional gel electrophoresis, Wild Turkey


Landscape-scale short-rotation early-growing season prescribed fire, hereafter prescribed fire, in upland hardwood forests represents a recent shift in management strategies across eastern upland forests. Not only does this strategy depart from dormant season to growing season prescriptions, but the strategy also moves from stand-scale to landscape-scale implementation (>1,000 ha). This being so, agencies are making considerable commitments in terms of time and resources to this management strategy, but the effects on wildlife in upland forests, especially those dominated by hardwood canopy species, are relatively unknown. We initiated our study to assess whether this management strategy affects eastern wild turkey reproductive ecology on the Ozark-St. Francis National Forest. We marked 67 wild turkey hens with Global Positioning System (GPS) Platform Transmitting Terminals in 2012 and 2013 to document exposure to prescribed fire, and estimate daily nest survival, nest success, and nest-site selection. We estimated these reproductive parameters in forest units managed with prescribed fire (treated) and units absent of prescribed fire (untreated). Of 60 initial nest attempts monitored, none were destroyed or exposed to prescribed fire because a majority of fires occurred early than a majority of the nesting activity. We found nest success was greater in untreated units than treated units (36.4% versus 14.6%). We did not find any habitat characteristic differences between successful and unsuccessful nest-sites. We found that nest-site selection criteria differed between treated and untreated units. Visual concealment and woody ground cover were common selection criteria in both treated and untreated units. However, in treated units wild turkey selected nest-sites with fewer small shrubs (<5 cm ground diameter) and large trees (>20 cm DBH) but not in untreated units. In untreated units wild turkey selected nest-sites with more large shrubs (≥5cm ground diameter) but did not select for small shrubs or large trees. Our findings suggest that wild turkey have not benefited from the reintroduction of prescribed fire to the WRERA.

Concepts: Bird, Forest, Turkey, Global Positioning System, Galliformes, Domestic turkey, Meleagrididae, Wild Turkey


The distribution of the wild turkey (Meleagris gallopavo) extends from Mexico to southeastern Canada and to the eastern and southern regions of the USA. Six subspecies have been described based on morphological characteristics and/or geographical variations in wild and domesticated populations. In this paper, based on DNA sequence data from the mitochondrial D-loop, we investigated the genetic diversity and structure, genealogical relationships, divergence time and demographic history of M. gallopavo populations including domesticated individuals.

Concepts: DNA, Biodiversity, Evolution, United States, Population genetics, Turkey, Galliformes, Wild Turkey


The objective of this study was to assess beak shape variation in domestic turkeys (Meleagris gallopavo) and determine the effects of age, sex, and beak size on beak shape variation using geometric morphometrics. Dorsal and right lateral images were taken of 2442 turkeys at 6 and 18.5 weeks of age. Landmarks were digitized in tpsDig in three analyses of the dorsal upper mandible, lateral upper mandible, and lateral lower mandible shape of each turkey at both ages. The coordinate data were then subjected to a principal components analysis (PCA), multivariate regression, and a canonical variates analysis (CVA) with a Procrustes ANOVA in MorphoJ. For the dorsal images, three principal components (PCs) showed beak shape variation ranged from long, narrow, and pointed to short, wide, and blunt upper mandibles at both ages (6 weeks: 95.36%, 18.5 weeks: 92.21%). Three PCs showed the lateral upper mandible shape variation ranged from long, wide beaks with long, curved beak tips to short, narrow beaks with short, pointed beak tips at both ages (6 weeks: 94.91%, 18.5 weeks: 94.33%). Three PCs also explained 97.80% (6 weeks) and 97.11% (18.5 weeks) of the lateral lower mandible shape variation ranging from wide and round to narrow and thin lower mandibles with superior/inferior beak tip shifts. Beak size accounted for varying proportions of the beak shape variation (0.96-54.76%; P < 0.0001) in the three analyses of each age group. For all the analyses, the CVA showed sexual dimorphism in beak shape (P < 0.0001) with female upper mandibles appearing wider and blunter dorsally with long, curved beak tips laterally. Whereas male turkey upper mandibles had a narrow, pointed dorsal appearance and short, pointed beak tips laterally. Future applications of beak shape variability could have a genetic and welfare value by incorporating beak shape variation to select for specific turkey beak phenotypes as an alternative to beak treatment.

Concepts: Mandible, Turkey, Galliformes, Maxilla, Dental anatomy, Domestic turkey, Wild Turkey, Beak


BACKGROUND: The turkey (Meleagris gallopavo) is an important agricultural species and the second largest contributor to the world’s poultry meat production. Genetic improvement is attributed largely to selective breeding programs that rely on highly heritable phenotypic traits, such as body size and breast muscle development. Commercial breeding with small effective population sizes and epistasis can result in loss of genetic diversity, which in turn can lead to reduced individual fitness and reduced response to selection. The presence of genomic diversity in domestic livestock species therefore, is of great importance and a prerequisite for rapid and accurate genetic improvement of selected breeds in various environments, as well as to facilitate rapid adaptation to potential changes in breeding goals. Genomic selection requires a large number of genetic markers such as e.g. single nucleotide polymorphisms (SNPs) the most abundant source of genetic variation within the genome. RESULTS: Alignment of next generation sequencing data of 32 individual turkeys from different populations was used for the discovery of 5.49 million SNPs, which subsequently were used for the analysis of genetic diversity among the different populations. All of the commercial lines branched from a single node relative to the heritage varieties and the South Mexican turkey population. Heterozygosity of all individuals from the different turkey populations ranged from 0.17-2.73 SNPs/Kb, while heterozygosity of populations ranged from 0.73-1.64 SNPs/Kb. The average frequency of heterozygous SNPs in individual turkeys was 1.07 SNPs/Kb. Five genomic regions with very low nucleotide variation were identified in domestic turkeys that showed state of fixation towards alleles different than wild alleles. CONCLUSION: The turkey genome is much less diverse with a relatively low frequency of heterozygous SNPs as compared to other livestock species like chicken and pig. The whole genome SNP discovery study in turkey resulted in the detection of 5.49 million putative SNPs compared to the reference genome. All commercial lines appear to share a common origin. Presence of different alleles/haplotypes in the SM population highlights that specific haplotypes have been selected in the modern domesticated turkey.

Concepts: DNA, Gene, Genetics, Natural selection, Population genetics, Livestock, Domestic turkey, Wild Turkey


Domestic turkeys (Meleagris gallopavo) are one of the most susceptible animals known to the toxic effects of the mycotoxin aflatoxin B1 (AFB1), a potent human hepatocarcinogen, and universal maize contaminant. We have demonstrated that such susceptibility is associated with the inability of hepatic glutathione S-transferases (GSTs) to detoxify the reactive electrophilic metabolite exo-AFB1-8,9-epoxide (AFBO). Unlike their domestic counterparts, wild turkeys, which are relatively AFB1-resistant, possess hepatic GST-mediated AFBO conjugating activity. Here, we characterized the molecular and functional properties of hepatic alpha-class GSTs (GSTAs) from wild and domestic turkeys to shed light on the differences in resistance between these closely related strains. Six alpha-class GST genes (GSTA) amplified from wild turkeys (Eastern and Rio Grande subspecies), heritage breed turkeys (Royal Palm) and modern domestic (Nicholas strain) turkeys were sequenced, and catalytic activities of heterologously-expressed recombinant enzymes determined. Alpha-class identity was affirmed by conserved GST domains and four signature motifs. All GSTAs contained single nucleotide polymorphisms (SNPs) in their coding regions: GSTA1.1 (5 SNPs), GSTA1.2 (7), GSTA1.3 (3), GSTA2 (3), GSTA3 (1) and GSTA4 (2). E. coli-expressed GSTAs possessed varying activities toward GST substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (ECA), cumene hydroperoxide (CHP). As predicted by their relative resistance, livers from domestic turkeys lacked detectable GST-mediated AFBO detoxification activity, whereas those from wild and heritage birds possessed this critical activity, suggesting that intensive breeding and selection resulted in loss of AFB1-protective alleles during domestication. Our observation that recombinant tGSTAs detoxify AFBO, whereas their hepatic forms do not, implies that the hepatic forms of these enzymes are down-regulated, silenced, or otherwise modified by one or more mechanisms. These data may inform of possible molecular mechanisms of resistance to AFB1, and may also have the benefit of identifying genetic markers which could be used to enhance AFB1 resistance in modern domestic strains.

Concepts: DNA, Molecular biology, Aflatoxin, Glutathione S-transferase, Turkey, Galliformes, Domestic turkey, Wild Turkey


Footpad dermatitis is a condition that causes lesions on the plantar surface of the footpads in growing turkeys. Potential inflammatory processes and pain associated with increasing severity of footpad dermatitis raise animal welfare concerns. This study investigated whether the temperature of the plantar surface of the foot (the footpads and the entire plantar foot including interdigital membranes) assessed with infrared thermography reflects severity of mild footpad dermatitis as assessed with a Visual Analogue Scale in 80 turkey toms at 10 weeks of age. In order to study effects of a potential emotional arousal due to the testing procedures, effects of sequential testing order and duration of handling of the turkeys was included in the model. Footpad temperatures were significantly lower than foot temperatures (P < 0.001, R2 = 0.57, -3.36°C ± 0.28°C), and higher visual analogue scale scores were anti-correlated with footpad (-0.06°C ± 0.037°C) and foot temperatures (-0.07°C ± 0.066°C). Furthermore, a negative association between footpad temperature and handling time (-0.02 ± 0.0227, P = 0.048), and a non-linear association between foot and footpad temperatures and sequential testing order, were found (P<0.001). The results indicate that severity of mild footpad dermatitis as scored visually was associated with the temperatures of the plantar surface of the foot and footpads, and that thermal imaging therefore represents a novel tool for the reliable and non-invasive early detection of subclinical foot pathologies in turkeys. The association was negative, and the findings therefore indicate that potential inflammatory processes in the epidermis at this early stage of footpad dermatitis are negligible, and/or that the hyperkeratosis of the surface keratin shielded heat emission from the footpads. The associations between surface temperatures, handling time, and sequential testing order suggest an emotional arousal in response to the experimental procedures, and these factors need to be considered when applying infrared thermography in future studies of leg health in turkeys.

Concepts: Foot, Temperature, Black body, Infrared, Thermography, Thermal radiation, Infrared thermometer, Wild Turkey


Mitochondrial DNA (mtDNA) insertions have been detected in the nuclear genome of many eukaryotes. These sequences are pseudogenes originated by horizontal transfer of mtDNA fragments into the nuclear genome, producing nuclear DNA sequences of mitochondrial origin (numt). In this study we determined the frequency and distribution of mtDNA-originated pseudogenes in the turkey (Meleagris gallopavo) nuclear genome. The turkey reference genome (Turkey_2.01) was aligned with the reference linearized mtDNA sequence using last. A total of 32 numt sequences (corresponding to 18 numt regions derived by unique insertional events) were identified in the turkey nuclear genome (size ranging from 66 to 1415 bp; identity against the modern turkey mtDNA corresponding region ranging from 62% to 100%). Numts were distributed in nine chromosomes and in one scaffold. They derived from parts of 10 mtDNA protein-coding genes, ribosomal genes, the control region and 10 tRNA genes. Seven numt regions reported in the turkey genome were identified in orthologues positions in the Gallus gallus genome and therefore were present in the ancestral genome that in the Cretaceous originated the lineages of the modern crown Galliformes. Five recently integrated turkey numts were validated by PCR in 168 turkeys of six different domestic populations. None of the analysed numts were polymorphic (i.e. absence of the inserted sequence, as reported in numts of recent integration in other species), suggesting that the reticulate speciation model is not useful for explaining the origin of the domesticated turkey lineage.

Concepts: DNA, Gene, Bacteria, Mitochondrial DNA, Turkey, Phasianidae, Galliformes, Wild Turkey