SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: White blood cell

191

Seasonal variations are rarely considered a contributing component to human tissue function or health, although many diseases and physiological process display annual periodicities. Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue to have seasonal expression profiles, with inverted patterns observed between Europe and Oceania. We also find the cellular composition of blood to vary by season, and these changes, which differ between the United Kingdom and The Gambia, could explain the gene expression periodicity. With regards to tissue function, the immune system has a profound pro-inflammatory transcriptomic profile during European winter, with increased levels of soluble IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require further exploration as contributors to various aspects of human physiology and disease.

Concepts: Immune system, White blood cell, Antibody, Gene, Bacteria, Blood, Organism, Immunology

173

Dendritic cells (DCs) are considered the most potent antigen-presenting cells (APCs), which directly prime or cross-prime MHC I-restricted cytotoxic T cells (CTLs). However, recent evidence suggests the existence of other, as-yet unidentified APCs also able to prime T cells. To identify those APCs, we used adenoviral (rAd) vectors, which do not infect DCs but selectively accumulate in CD169(+) macrophages (MPs). In mice that lack DCs, infection of CD169(+) MPs was sufficient to prime CTLs specific for all epitopes tested. In contrast, CTL responses relying exclusively on cross-presenting DCs were biased to selected strong MHC I-binding peptides only. When both DCs and MPs were absent, no CTL responses could be elicited. Therefore, CD169(+) MPs can be considered APCs that significantly contribute to CTL responses.

Concepts: Immune system, White blood cell, Virus, Antigen, Cytotoxic T cell, Dendritic cell, MHC class I, Antigen-presenting cell

171

Crosslinking of immunoglobulin E antibodies (IgE) bound at the surface of mast cells and subsequent mediator release is considered the most important trigger for allergic reactions. Therefore, the genetic control of IgE levels is studied in the context of allergic diseases, such as asthma, atopic rhinitis, or atopic dermatitis (AD). We performed genome-wide association studies in 161 Labrador Retrievers with regard to total and allergen-specific immunoglobulin E (IgE) levels. We identified a genome-wide significant association on CFA 5 with the antigen-specific IgE responsiveness to Acarus siro. We detected a second genome-wide significant association with respect to the antigen-specific IgE responsiveness to Tyrophagus putrescentiae at a different locus on chromosome 5. A. siro and T. putrescentiae both belong to the family Acaridae and represent so-called storage or forage mites. These forage mites are discussed as major allergen sources in canine AD. No obvious candidate gene for the regulation of IgE levels is located under the two association signals. Therefore our studies offer a chance of identifying a novel mechanism controlling the host’s IgE response.

Concepts: Immune system, White blood cell, Asthma, Hypersensitivity, Immunoglobulin E, Allergy, Mast cell, Atopy

168

BACKGROUND: S100A9 has been shown to be important for the function of so called Myeloid Derived Suppressor Cells (MDSC). Cells with a similar phenotype are also involved in pro-inflammatory processes, and we therefore wanted to investigate the gene expression and function of these cells in animals that were either subjected to chronic inflammation, or inoculated with tumors. METHODS: CD11b+Ly6C++ and Ly6G+ cells were isolated from spleen, tumor tissue or inflammatory granulomas. S100A9, Arginase 1 and iNOS gene expression in the various CD11b+ cell populations was anayzed using Q-PCR. The suppressive activity of the CD11b+ cell populations from different donors was studied in co-culture experiments. RESULTS: S100A9 was shown to be expressed mainly in splenic CD11b+Ly6C+G+ cells both at the RNA and protein level. Arginase I and iNOS expression could be detected in both CD11b+Ly6C+Ly6G+ and CD11b+Ly6C+G-/C++G- derived from tumors or a site of chronic inflammation, but was very low in the same cell populations isolated from the spleen. CD11b+ cells isolated from mice with peritoneal chronic inflammation were able to stimulate T lymphocytes, while CD11b+ cells from mice with peritoneal tumors suppressed T cell growth. CONCLUSION: An identical CD11b+Ly6C++G- cell population appears to have the ability to adopt immune stimulatory or immune suppressive functions dependent on the presence of a local inflammatory or tumor microenvironment. Thus, there is a functional plasticity in the CD11b+Ly6C++G- cell population that cannot be distinguished with the current molecular markers.

Concepts: White blood cell, DNA, Gene, Genetics, Cell nucleus, Gene expression, Bacteria, Organism

167

BackgroundIpilimumab is a recently approved immunotherapy that has demonstrated an improvement in the overall survival (OS) of patients with metastatic melanoma. We report a single-institution experience in patients treated in a compassionate-use program.Patients and methodsIn this prospective study, patients were treated between June 2010 and September 2011. Inclusion criteria were a diagnosis of unresectable stage III or IV melanoma, at least one previous line of chemotherapy, and survival 12 weeks after the first perfusion. Four courses of ipilimumab were administered at a dose of 3 mg/kg every 3 weeks.ResultsSeventy-three patients were included. Median OS was 9.1 months (95% CI 6.4-11.3) from the start of ipilimumab. Immune-related adverse events were observed in 45 patients (62%), including 19 grade 3-4 events (26%). No drug-related death occurred. A lymphocyte count >1000/mm(3) at the start of the second course and an increase in the eosinophil count >100/mm(3) between the first and second infusions were correlated with an improved OS.ConclusionIpilimumab toxic effect is manageable in real life. Biological data such as lymphocyte and eosinophil counts at the time of the second ipilimumab infusion appear to be early markers associated with better OS.

Concepts: Immune system, White blood cell, Better, Improve, Lymph node, Chemotherapy, Melanoma, Cytotoxicity

167

Macrophage G2A and CD36 lipid receptors are thought to mediate efferocytosis following tissue injury and thereby prevent excessive inflammation which could compromise tissue repair. To test this, we subjected mice lacking G2A or CD36 receptors to bleomycin-induced lung injury and measured efferocytosis, inflammation and fibrosis. Loss of CD36 (but not G2A) delayed clearance of apoptotic alveolar cells (mean 78% increase in apoptotic cells 7 days post-injury), potentiated inflammation (mean 56% increase in lung neutrophils and 75% increase in lung KC levels 7 days post-injury, 51% increase in lung macrophages 14 days post-injury) and reduced lung fibrosis (mean 41% and 29% reduction 14 and 21 days post-injury respectively). Reduced fibrosis in CD36-/- mice was associated with lower levels of pro-fibrotic TH2 cytokines (IL-9, IL-13, IL-4), decreased expression of the M2 macrophage marker Arginase-1 and reduced interstitial myofibroblasts. G2A, on the other hand, was required for optimal clearance of apoptotic neutrophils during zymosan-induced peritoneal inflammation (50.3% increase in apoptotic neutrophils and 30.6% increase in total neutrophils 24 hours following zymosan administration in G2A-/- mice). Thus, CD36 is required for timely removal of apoptotic cells in the context of lung injury and modulates subsequent inflammatory and fibrotic processes relevant to fibrotic lung disease.

Concepts: Immune system, White blood cell, Monocyte, Fibrosis, Cell biology, Macrophage, Apoptosis, Idiopathic pulmonary fibrosis

167

The characteristics of the T cell response to the members of oral flora are poorly understood. We characterized the antibody and T cell responses to FadA and Td92, adhesins from Fusobacterium nucleatum, an oral commensal, and Treponema denticola, a periodontal pathogen, respectively. Peripheral blood and saliva were obtained from healthy individuals and patients with untreated chronic periodontitis (CP, n = 11 paris) and after successful treatment of the disease (n = 9). The levels of antigen-specific antibody were measured by ELISA. In plasma, IgG1 was the most abundant isotype of Ab for both Ags, followed by IgA and then IgG4. The levels of FadA-specific salivary IgA (sIgA) were higher than Td92-specific sIgA and the FadA-specific IgA levels observed in plasma. However, the periodontal health status of the individuals did not affect the levels of FadA- or Td92-specific antibody. Even healthy individuals contained FadA- and Td92-specific CD4(+) T cells, as determined by the detection of intracytoplasmic CD154 after short-term in vitro stimulation of peripheral blood mononuclear cells (PBMCs) with the antigens. Patients with CP tended to possess increased numbers of FadA- and Td92-specific CD4(+) T cells but reduced numbers of Td92-specific Foxp3(+)CD4(+) Tregs than the healthy subjects. Both FadA and Td92 induced the production of IFNγ and IL-10 but inhibited the secretion of IL-4 by PBMCs. In conclusion, F. nucleatum induced Th3 (sIgA)- and Th1 (IFNγ and IgG1)-dominant immune responses, whereas T. denticola induced a Th1 (IFNγ and IgG1)-dominant response. This IFNγ-dominant cytokine response was impaired in CP patients, and the Td92-induced IFNγ levels were negatively associated with periodontal destruction in patients. These findings may provide new insights into the homeostatic interaction between the immune system and oral bacteria and the pathogenesis of periodontitis.

Concepts: Immune system, White blood cell, Antibody, Bacteria, Blood, Immunology, Humoral immunity, Antigen

166

Pleural tuberculosis (TB), together with lymphatic TB, constitutes more than half of all extrapulmonary cases. Pleural effusions (PEs) in TB are representative of lymphocytic PEs which are dominated by T cells. However, the mechanism underlying T lymphocytes homing and accumulation in PEs is still incompletely understood. Here we performed a comparative analysis of cytokine abundance in PEs from TB patients and non-TB patients by protein array analysis and observed that MCP-2/CCL8 is highly expressed in the TB-PEs as compared to peripheral blood. Meanwhile, we observed that CCR5, the primary receptor used by MCP-2/CCL8, is mostly expressed on pleural CD4(+) T lymphocytes. Furthermore, we found that infection with either Mycobacterium bovis Bacillus Calmette-Guérin (BCG) or Mycobacterium tuberculosis H37Rv induced production of MCP-2/CCL8 at both transcriptional and protein level in Raw264.7 and THP-1 macrophage cells, mouse peritoneal macrophages as well as human PBMC monocyte-derived macrophages (MDMs). The induction of MCP-2/CCL8 by mycobacteria is dependent on the activation of TLR2/PI3K/Akt and p38 signaling pathway. We conclude that accumulation of MCP-2/CCL8 in TB-PEs may function as a biomarker for TB diagnosis.

Concepts: Immune system, White blood cell, Protein, Cell biology, B cell, Tuberculosis, Mycobacterium, Mycobacterium bovis

165

Controlled induction of phagocytosis in macrophages offers the ability to therapeutically regulate the immune system as well as improve delivery of chemicals or biologicals for immune processing. Maximizing particle uptake by macrophages through Fc receptor-mediated phagocytosis could lead to new delivery mechanisms in drug or vaccine development. Fc ligand density and particle size were examined independently and in combination in order to optimize and tune the phagocytosis of opsonized microparticles. We show the internalization efficiency of small polystyrene particles (0.5 µm to 2 µm) is significantly affected by changes in Fc ligand density, while particles greater than 2 µm show little correlation between internalization and Fc density. We found that while macrophages can efficiently phagocytose a large number of smaller particles, the total volume of phagocytosed particles is maximized through the non-specific uptake of larger microparticles. Therefore, larger microparticles may be more efficient at delivering a greater therapeutic payload to macrophages, but smaller opsonized microparticles can deliver bio-active substances to a greater percentage of the macrophage population. This study is the first to treat as independent variables the physical and biological properties of Fc density and microparticle size that initiate macrophage phagocytosis. Defining the physical and biological parameters that affect phagocytosis efficiency will lead to improved methods of microparticle delivery to macrophages.

Concepts: Immune system, White blood cell, Antibody, Vaccine, Phagocytosis, Macrophage, Apoptosis, Opsonin

164

Recent studies suggest that leukocytes and erythrocytes play a role in coagulation. However, whether leukocytes, erythrocytes and other hematological variables are associated with risk of venous thrombosis is not well known. To study this, we used data from 2473 venous thrombosis patients and 2935 controls. The variables assessed were: total leukocytes, granulocytes, lymphocytes, monocytes, hematocrit, hemoglobin, erythrocytes and red cell indices (mean corpuscular volume, mean hemoglobin volume, mean corpuscular hemoglobin volume and red cell distribution width). We found a strong dose-response relation for higher red cell distribution width and monocytes with risk of venous thrombosis, with odds ratios of 3.1 (95% confidence interval, 2.0-4.8) and 2.8 (95% confidence interval, 1.3-5.8), respectively, after adjustment for age, sex, C-reactive protein, malignancy and co-morbidities. Monocyte count and red cell distribution width were associated with venous thrombosis even within reference ranges. A low monocyte count (< 0.12x109/L) was associated with a lower venous thrombosis risk after full adjustment (odds ratios 0.6; 95% confidence interval, 0.4-0.8). In summary, high red cell distribution width and blood monocytes, two unexpensive and easily obtainable tests were clearly associated with an increased risk of venous thrombosis. Future studies should evaluate the underlying mechanism and the use of these variables in prediction models for first and recurrent thrombosis.

Concepts: Immune system, White blood cell, Monocyte, Blood, Red blood cell, Hematology, Complete blood count, Mean corpuscular volume